Refine Your Search

Topic

Author

Search Results

Technical Paper

The Influence of Tire Deformation on Ride Comfort of a Truck

1990-10-01
902268
When truck tires have a deformation such as radial runout, flat spot, and abnormal wear as a result of panic braking, they affect vehicle vibration in the form of displacement input whose spectrum involves higher order terms of tire revolution. While a truck has vibration modes of frame bending as well as pitching and unsprung-mass viberation in the input frequency range, the tire displacement input induces vehicle vibration as a combination of these modes. Results of calculations and experiments of a 4x2 medium-duty truck are analyzed and an example of means for improving ride comfort is described in this paper.
Technical Paper

A New Approach to Vehicle Interior Control

1991-02-01
910472
In order to meet increasing demands for safety and comfort in a vehicle compartment, automatic adjustment of seat, mirrors, steering wheel has been developed. The multiplex wiring system was constructed for the automatic adjustment of the cockpit elements to drivers preferred positions or to physique-matched settings based on ergonomic data. This paper describes the construction of the multiplex system and functions of automatic adjustment of the cockpit elements for comfortable driving position and better visibility.
Technical Paper

Passenger Car Engines for the 21st Century

1991-09-01
911908
During next decade, automotive engineers will take up unprecedented challenges to meet a variety of technical demands on passenger cars. While performance, refinement and reliability will continue to be major technical goals of passenger cars, reducing their impact on the environment not only in urban areas but also on the global basis will become an increasingly urgent issue. In addition, the need for energy and resources saving will necessitate development of more fuel efficient cars, exploitation of alternative energy and recycled materials. In this paper, the authors will review various alternative engines as candidates to satisfy the above demands. The authors will also discuss various alternative transportation energy sources such as alcoholic fuels, natural gas, hydrogen and electricity. Finally the trends of future passenger car engine design will be discussed.
Technical Paper

Development of Austempered Ductile Iron Timing Gears

1997-11-17
973253
Austempered ductile iron (ADI) is a material having excellent mechanical properties and damping capacity. However practical mass production of ADI gears has not been possible due to ADI's poor machinability and distortion during the austempering heat treatment. With a new process method of carrying out hobbing before austempering when the material is in its soft condition, then austempering it and lastly, conducting the shave finishing process, we have diminished the above defects and developed practical ADI gears. These new gears generate less noise than ordinary nitrocarburized steel gears and are superior in pitting resistance.
Technical Paper

Collapse of Thin-Walled Curved Beam with Closed-Hat Section - Part 2: Simulation by Plane Plastic Hinge Model

1990-02-01
900461
This paper describes a calculating method to predict the quasi-static collapsing behaviors of spot-welded closed-hat section curved beams under axial compression. The overall deformat ions and the local buckling modes of beams were calculated using a geometrical model. Force-displacement relations were predicted by a elastic-plastic structural analysis method using the ‘plastic hinge’ concept. Collapsing tests were made on beams which are differenting section size, rotation angle, and metal sheet thickness. Comparisons between the calculated and experimental results of deformed shapes of beams, the local buckling modes and the force displacement relations are discussed.
Technical Paper

Development of thermoplastic elastomeric vacuum hose for engine control

2000-06-12
2000-05-0150
Vulcanized rubber hoses are difficult to recycle and have a complicated manufacturing process. Recently, we have developed the vacuum hose for engine control out of thermoplastic elastomers. As a result of this development, scrap material from the manufacturing process can be recycled and, in addition, about a 30 percent weight reduction and a 20 percent cost reduction are achievable by virtue of the lower specific gravity and by the more simplified manufacturing process. In order to assess the feasibility of using thermoplastic elastomers for vacuum hoses, we developed a heat aging simulation test method. This was achieved by first investigating the actual vehicle environmental conditions of currently used vacuum hoses by retrieving and examining these hoses from used vehicles. We then extrapolated what the condition of such hoses would be after being subjected to heat aging for 200,000 km of service in an actual vehicle, and applied this calculation to our newly developed hoses.
Technical Paper

Computational design of commercial vehicle for reconciling aerodynamics and engine cooling performance

2000-06-12
2000-05-0344
As the global environmental protection becomes the world consensus recently, the regulations of the fuel consumption and the exhaust gas have large effects on the performance and the fundamental structure of commercial vehicles. Especially the technology concerning "fluid" and "heat" has a close relationship with those issues. Owing to above circumstances, commercial vehicles such as large trucks and buses are forced to be designed near the limit of allowance. Furthermore, a rapid design is another requirement. However, though significant number of variations, i.e., cab configuration, wheel base, rear body configuration, engine specification, etc., are prepared, it is impossible to improve the performance of all those combinations by experiments which cost a lot. Accordingly, the quantitative prediction using computer will become indispensable at the beginning term of new car development.
Technical Paper

Acoustic Analysis of Truck Cab

1991-05-01
911075
This paper presents the results of acoustic analyses of light duty truck cabs by actual vehicle testing and by numerical analysis utilizing the boundary element method (BEM). In the resonance mode analysis using BEM, by taking into account the vibration characteristics of cab panels, the presence of the modes other than the purely acoustic cavity resonance modes were confirmed. The contribution of the panel vibrations to booming noise that occurs in actual light duty trucks was analyzed. BEM analysis showed that some of the panel vibration had a negative contribution to booming noise. In other words, decreasing vibration in such a section was shown to increase sound pressure. The results of the BEM analysis match well with actual test results. It has thus been demonstrated that BEM is an effective method for analyzing truck interior noise reduction.
Technical Paper

Analysis of Torsional Stiffness Share Rate of Truck Frame

1991-11-01
912676
In order to design a well-balanced truck frame, optimization of not only the stiffness of the entire body and stress of each member, but also the internal force of each member is necessary, including the effect of a rear body mounted on the frame. This paper proposes a new parameter, “torsional stiffness share rate,” that directly correlates the contribution of member torsional stiffness to frame torsional stiffness with the internal force of the members as to torsion of the truck frame. The merits of the torsional stiffness share rate are shown in comparison with the strain energy share rate and the stiffness contribution rate. The results of experimental and FEM analyses of the torsional stiffness share rate are also presented.
Technical Paper

New Mitsubishi V8 20 Liter Diesel Engine

1992-02-01
920085
In the heavy-duty commercial vehicle market in Japan, particularly in the segment of dump trucks and tractors, naturally aspirated engines maintain a dominant market share because of their superior torque characteristics in the low speed range. In order to meet the ever increasing needs for higher speeds of transportation, better fuel economy and higher reliability, and the needs for increasingly strict exhaust emission regulations, Mitsubishi Motors Corporation (MMC) has developed the 8M20, a 20 liter V8 diesel engine. The '92 model series of “THE GREAT”, MMC's main heavy-duty trucks, has featured this new and powerful engine and has been in the market place since October, 1991. The 8M20 is a naturally aspirated engine that provides an output of 294kW/2200rpm, complying with the current Japanese exhaust emission regulations.
Technical Paper

Suppression of Mud Adhesion to the Rear Surface of a Van-Type Truck

1992-02-01
920203
Mud adhesion to the rear surfaces of trucks, vans and buses causes troublesome results such as aesthetic degradation, hindered rear view and laborious washing. To raise the product value of trucks and buses, it is important to develop effective measures for suppressing such mud adhesion. In this research the authors first clarified the mechanism of mud adhesion through flow visualization tests. Then, wind tunnel tests were performed to predict the effects of various countermeasures, and prospective ones were put under actual driving tests to verify their effects. The following measures were found effective in suppressing mud adhesion. (1) Aerodynamic improvement by attaching corner vanes to the upper and side edges of the rear surface. (2) Blocking road splash with a slanted plate under the truck and close to the base.
Technical Paper

Effects of Various Methods for Improving Vehicle Startability and Transient Response of Turbocharged Diesel Trucks

1992-02-01
920044
To improve vehicle startability and transient response of turbocharged diesel trucks, their phenomena have been investigated and analyzed in detail and various supercharging systems have been developed and installed on a truck for comparison of their characteristics. The systems considered were ceramic, variable geometry, variable entry,and air-assisted turbochargers and a combined supercharging system. The variable entry turbocharger has two turbine scrolls with different nozzle areas and two switching valves to get three different turbine flow capacities. The combined supercharging system consists of a mechanical supercharger and a turbocharger. These are linked in series. Both work in a low engine speed range, and the turbocharger only works in middle and high engine speed ranges. Among these systems, the combined supercharging system is the best for improving both vehicle startability and transient response of a truck.
Technical Paper

Energy Absorption and Load Transmission at Vehicle Frontal Collision

1992-02-01
920390
This paper describes the method to improve the energy absorption characteristics during the vehicle frontal collision. The method is to control the collapse phases of the members constituting the vehicle body and to increase collapse force of a member. This phase-control can be accomplished by superimposing the crest of the collapse force curve, which one member causes, on the trough of any other members'. The bulkheads installed in the members are useful. to control the phase and to increase the collapse force. Numerical analysis and experiment of a vehicle collision show that the control leads to the improvement of energy absorption characteristics and load transmission efficiency.
Technical Paper

Heat Flow on Disc Brakes

1993-04-01
931084
This paper describes an experimental analysis of frictional heat generated between the pads and rotors of disc brakes, to determine the paths and amounts of heat flow. The brakes were applied repeatedly at a constant initial speed, deceleration and interval until brake temperature became saturated. Under these conditions we measured an unsteady temperature distribution state during a single application of the brakes, and also a saturated (quasi-stationary) temperature distribution during repeated braking. Heat flow was studied in six paths: heat conduction to the pad; heat convection to the air from the friction areas of the inner and outer disc, from the ventilating parts and from the tube section of the rotor; and heat conduction to the rotor flange section.
Technical Paper

Shape Optimization of Solid Structures Using the Growth-Strain Method (Application to Chassis Components)

1992-06-01
921063
This paper describes the shape optimization analysis of solid structures such as chassis components of a car, where the shape optimization problems of linearly elastic structures are treated to improve strength or to reduce weight of solid structures. The optimization method used here is the growth-strain method, and the shape optimization system is developed based on this method. The growth-strain method, which modifies a shape by generating bulk strain, was previously proposed for analysis of the uniform-strength shape. The generation law of the bulk strain is given as a function of a distributed parameter to be uniformed, such as von Mises stress. Two improved generation laws are presented. The first law makes the distributed parameter uniform while controlling the structural volume to a target value. The second law makes the distributed parameter uniform while controlling the maximum value of the distributed parameter to a target value.
Technical Paper

Reduction of Spiral Bevel Gear Noise in 4-Wheel Drive Vehicle Transfer System

1992-09-01
922109
Mitsubishi Motors Corporation uses spiral bevel gears in the transfer system for 4-wheel drive passenger cars modified from the front wheel drive configuration. This transfer gear ratio is near 1:1, and gears have uniform depth teeth cutting by the continuous generating method of OERLIKON cutting machine. In this method, the cutter and the work rotations are timed together to accomplish continuous indexing and cutting in order to enable high productivity. In general, it is difficult to reduce the meshing noise of spiral bevel gears and control its quality. The authors established the tooth surface coordinates, to reduce the meshing noise, by studying the influence of tooth surface coordinates on the meshing transmission error (MTE).
Technical Paper

Shape Study for a Low-Air Resistance Air Deflector - The Second Report

1995-02-01
950633
We reported, in our first report1), the study of shapes of air deflectors that have strong yawing angle characteristics for the air resistance encountered when vehicles are running at high speed, taking into account the ambient wind. However, it is rarely the case that the optimum shape of air deflector, which was obtained and reported in our first report, is directly adopted for practical use. This paper reports the results of measurement tests on how the air resistance increases (worsens) when an air deflector is mounted on the cab of a vehicle: in the case when the air deflector was slightly changed on the same vehicle; or when the parameters of the vehicle (the height of the rear body) were changed for the same air deflector. We obtained the following results: Considerations and adjustments are required not to allow flows passing over upper and side surfaces of the air deflector to hit the front surface of the rear body.
Technical Paper

Four Wheel Steering System for Medium-Duty Trucks

1994-11-01
942310
From the standpoint of safety, the demands are growing in recent years for better controllability and stability of automobiles and in particular in trucks. The truck, however, when compared with the passenger car, is subject to larger changes in gross vehicle mass and center of gravity depending on its load placement. In addition, since the cornering power generated by the truck tire per load is smaller than that generated by the passenger car tire, it is difficult to introduce significant improvements in controllability and stability simply by use of passive techniques like suspension characteristic tuning. Therefore, studies were performed on the applicability of the 4WS system, an active vehicle dynamic characteristic control technique, to a Truck as a means for solving these problems.
Technical Paper

A Method of Predicting Dent Resistance of Automobile Body Panels

1995-02-01
950574
Optimizing the design of automobile outer panels for weight reductions requires a consideration of stiffness and dent resistance. This paper presents a finite element analysis method for predicting the dent resistance of automobile body panels. The method is based on elastoplasticity analysis and nonlinear contact analysis. The analysis shows that dent resistance is greatly influenced not only by the stress-strain curve of the formed panel but also by the residual stress in the panel. An increase in yield stress improves dent resistance. The computed results obtained with this method compare favorably with experimental data, thereby validating this approach.
X