Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Filtration Behavior of Diesel Particulate Filters (2)

2007-04-16
2007-01-0923
Due to its better fuel efficiency and low CO2 emissions, the number of diesel engine vehicles is increasing worldwide. Since they have high Particulate Matter (PM) emissions, tighter emission regulations will be enforced in Europe, the US, and Japan over the coming years. The Diesel Particulate Filter (DPF) has made it possible to meet the tighter regulations and Silicon Carbide and Cordierite DPF's have been applied to various vehicles from passenger cars to heavy-duty trucks. However, it has been reported that nano-size PM has a harmful effect on human health. Therefore, it is desirable that PM regulations should be tightened. This paper will describe the influence of the DPF material characteristics on PM filtration efficiency and emissions levels, in addition to pressure drop.
Technical Paper

Durability Study on Si-SiC Material for DPF(2)

2004-03-08
2004-01-0951
Among the durability items of the DPF (Diesel Particulate Filter), high accumulated soot mass limit is important for the low fuel consumption and also for the robustness. In case of catalyzed DPF, it depends on the following two properties during soot regeneration. One is the lower maximum-temperature inside of the DPF during usual regeneration in order to preserve the catalyst performance. The other is the higher thermal resistance against the unusual regeneration of excess amount of soot. This paper presents the improvement in the soot mass limit of Si bonded SiC DPF. Maximum-temperature inside of the DPF was lowered by the improvement of thermal conductivity of the material, resulted from the controlling of the microstructure. Additionally the thermal resistance was improved by the surface treatment of the Si and SiC.
Technical Paper

Material Development of High Porous SiC for Catalyzed Diesel Particulate Filters

2003-03-03
2003-01-0380
Low pressure-loss, especially for a catalyzed DPF(Diesel Particulate Filter), is a very significant performance. Higher-porosity DPF materials provide this lower pressure-loss parameter. This paper describes the successful material development of highly porous (up to 65% porosity) SiC materials. In addition, the influence of porosity and pore size distribution on pressure-loss and filtration efficiency with and without various catalyst loadings is presented.
Technical Paper

The Study for Structural Design of the Segmented SiC-DPF

2006-04-03
2006-01-1527
The application of Diesel Particulate Filters (DPF's) is expanding in the European, Japanese and US markets to comply with the tighter PM regulations. SiC DPF's, featuring greater robustness, have been applied extensively to passenger cars and are expanding into larger sizes for Light Duty Trucks applications. The SiC-DPF has higher mechanical strength when compared to other materials, such as Cordierite. However, SiC's thermal expansion ratio is greater. Therefore, the SiC-DPF is designed with 35 X 35mm segments and cement bonded construction, both of which function to relieve thermal stress. The appearance of the SiC-DPF with the segment design is shown in Figure 1. In this paper, the thermal stress mechanism of the segmented joint during soot regeneration and the influence of the cement properties on the thermal shock resistance was investigated by using the soot regeneration model and thermal stress analysis in addition to the engine test.
X