Refine Your Search

Topic

Author

Search Results

Journal Article

Symbolic Formulation of Multibody Dynamic Equations for Wheeled Vehicle Systems on Three-Dimensional Roads

2010-04-12
2010-01-0719
A method to improve the computational efficiency of analyzing wheeled vehicle systems on three-dimensional (3-D) roads has been developed. This was accomplished by creating a technique to incorporate the tire on a 3-D road in a multibody dynamics model of the vehicle with an approach that formulates the governing equations using symbolic formulation. For general handling analysis performed on the vehicle, the tire forces and moments are determined using a tire model that represents the tire as a set of mathematical expressions. Since these expressions need numerical values to determine the forces and moments, a symbolic solution does not exist. Therefore, the evaluation of the tire forces and moments needs to be done during simulation. However, symbolic operations can be used when the governing equations are formulated to develop an efficient method to evaluate these forces.
Journal Article

A New Adaptive Controller for Performance Improvement of Automotive Suspension Systems with MR Dampers

2014-04-01
2014-01-0052
A control algorithm is developed for active/semi-active suspensions which can provide more comfort and better handling simultaneously. A weighting parameter is tuned online which is derived from two components - slow and fast adaptation to assign weights to comfort and handling. After establishing through simulations that the proposed adaptive control algorithm can demonstrate a performance better than some controllers in prior-art, it is implemented on an actual vehicle (Cadillac STS) which is equipped with MR dampers and several sensors. The vehicle is tested on smooth and rough roads and over speed bumps.
Journal Article

Physics-Based Models, Sensitivity Analysis, and Optimization of Automotive Batteries

2013-10-14
2013-01-2560
The analysis of nickel metal hydride (Ni-MH) battery performance is very important for automotive researchers and manufacturers. The performance of a battery can be described as a direct consequence of various chemical and physical phenomena taking place inside the container. In this paper, a physics-based model of a Ni-MH battery will be presented. To analyze its performance, the efficiency of the battery is chosen as the performance measure, which is defined as the ratio of the energy output from the battery and the energy input to the battery while charging. Parametric sensitivity analysis will be used to generate sensitivity information for the state variables of the model. The generated information will be used to showcase how sensitivity information can be used to identify unique model behavior and how it can be used to optimize the capacity of the battery. The results will be validated using a finite difference formulation.
Journal Article

Thermal Management of Lithium-Ion Pouch Cell with Indirect Liquid Cooling using Dual Cold Plates Approach

2015-04-14
2015-01-1184
The performance, life cycle cost, and safety of electric and hybrid electric vehicles (EVs and HEVs) depend strongly on their energy storage system. Advanced batteries such as lithium-ion (Li-ion) polymer batteries are quite viable options for storing energy in EVs and HEVs. In addition, thermal management is essential for achieving the desired performance and life cycle from a particular battery. Therefore, to design a thermal management system, a designer must study the thermal characteristics of batteries. The thermal characteristics that are needed include the surface temperature distribution, heat flux, and the heat generation from batteries under various charge/discharge profiles. Therefore, in the first part of the research, surface temperature distribution from a lithium-ion pouch cell (20Ah capacity) is studied under different discharge rates of 1C, 2C, 3C, and 4C.
Journal Article

Cooperative Least Square Parameter Identification by Consensus within the Network of Autonomous Vehicles

2016-04-05
2016-01-0149
In this paper, a consensus framework for cooperative parameter estimation within the vehicular network is presented. It is assumed that each vehicle is equipped with a dedicated short range communication (DSRC) device and connected to other vehicles. The improvement achieved by the consensus for parameter estimation in presence of sensor’s noise is studied, and the effects of network nodes and edges on the consensus performance is discussed. Finally, the simulation results of the introduced cooperative estimation algorithm for estimation of the unknown parameter of road condition is presented. It is shown that due to the faster dynamic of network communication, single agents’ estimation converges to the least square approximation of the unknown parameter properly.
Journal Article

High Strain Rate Mechanical Characterization of Carbon Fiber Reinforced Polymer Composites Using Digital Image Correlations

2017-03-28
2017-01-0230
The introduction of carbon fiber reinforced polymer (CFRP) composites to structural components in lightweight automotive structures necessitates an assessment to evaluate that their crashworthiness dynamic response provides similar or higher levels of safety compared to conventional metallic structures. In order to develop, integrate and implement predictive computational models for CFRP composites that link the materials design, molding process and final performance requirements to enable optimal design and manufacturing vehicle systems for this study, the dynamic mechanical response of unidirectional (UD) and 2x2 twill weave CRFP composites was characterized at deformation rates applicable to crashworthiness performance. Non-standardized specimen geometries were tested on a standard uniaxial frame and an intermediate-to-high speed dynamic testing frame, equipped with high speed cameras for 3D digital image correlation (DIC).
Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Journal Article

Longitudinal Vehicle Dynamics Modeling and Parameter Estimation for Plug-in Hybrid Electric Vehicle

2017-03-28
2017-01-1574
System identification is an important aspect in model-based control design which is proven to be a cost-effective and time saving approach to improve the performance of hybrid electric vehicles (HEVs). This study focuses on modeling and parameter estimation of the longitudinal vehicle dynamics for Toyota Prius Plug-in Hybrid (PHEV) with power-split architecture. This model is needed to develop and evaluate various controllers, such as energy management system, adaptive cruise control, traction and driveline oscillation control. Particular emphasis is given to the driveline oscillations caused due to low damping present in PHEVs by incorporating flexibility in the half shaft and time lag in the tire model.
Technical Paper

A Personalized Deep Learning Approach for Trajectory Prediction of Connected Vehicles

2020-04-14
2020-01-0759
Forecasting the motion of the leading vehicle is a critical task for connected autonomous vehicles as it provides an efficient way to model the leading-following vehicle behavior and analyze the interactions. In this study, a personalized time-series modeling approach for leading vehicle trajectory prediction considering different driving styles is proposed. The method enables a precise, personalized trajectory prediction for leading vehicles with limited inter-vehicle communication signals, such as vehicle speed, acceleration, space headway, and time headway of the front vehicles. Based on the learning nature of human beings that a human always tries to solve problems based on grouping and similar experience, three different driving styles are first recognized based on an unsupervised clustering with a Gaussian Mixture Model (GMM).
Journal Article

Design of an Advanced Traction Controller for an Electric Vehicle Equipped with Four Direct Driven In-Wheel Motors

2008-04-14
2008-01-0589
The vision for the future automotive chassis is to interconnect the lateral, longitudinal, and vertical dynamics by separately controlling driving, braking, steering, and damping of each individual wheel. A major advantage of all wheel drive electric vehicles with four in-wheel motors is the possibility to control the torque and speed at each wheel independently. This paper proposes a traction controller for such a vehicle. It estimates the road's adhesion potential at each wheel and adjusts each motor voltage, such that the longitudinal slip is kept in an optimal range. For development and validation, a full vehicle model is designed in ADAMS/View software, in co-simulation with motor and control elements, modeled in MATLAB/Simulink.
Journal Article

Parametric Importance Analysis and Design Optimization of a Torque Converter Model Using Sensitivity Information

2012-04-16
2012-01-0808
Torque converters are used as coupling devices in automobile powertrains involving automatic transmissions. Efficient modeling of torque converters capturing various modes of operation is important for powertrain design and simulation, (Hroval and Tobler 1, Ishihara and Emori 2) optimization and control applications. Models of torque converters are available in various commercial simulation packages, Hadi et. al. 3. The information about the effect of model parameters on torque converter performance is valuable for any design operation. In this paper, a symbolic sensitivity analysis of a torque converter model will be presented. Direct differentiation (Serban and Freeman 4) is used to generate the sensitivity equations which results in equations in symbolic form. By solving the sensitivity equations, the effect of a perturbation of the model parameters on the behavior of the system is determined.
Journal Article

Impact Testing of a Hot-Formed B-Pillar with Tailored Properties - Experiments and Simulation

2013-04-08
2013-01-0608
This paper presents the numerical validation of the impact response of a hot formed B-pillar component with tailored properties. A laboratory-scale B-pillar tool is considered with integral heating and cooling sections in an effort to locally control the cooling rate of an austenitized blank, thereby producing a part with tailored microstructures to potentially improve the impact response of these components. An instrumented falling-weight drop tower was used to impact the lab-scale B-pillars in a modified 3-point bend configuration to assess the difference between a component in the fully hardened (martensitic) state and a component with a tailored region (consisting of bainite and ferrite). Numerical models were developed using LS-DYNA to simulate the forming and thermal history of the part to estimate the final thickness and strain distributions as well as the predicted microstructures.
Technical Paper

Progress Towards Nondestructive, On-Line Measurement of Sheet Metal Formability

1991-02-01
910509
A completely nondestructive means of r-value measurement is being developed. Unlike the modul-r method, it requires no specimen removal and has potential for on-line measure-ment. The method employs noncontacting ultrasonic transducers which generate waves propagating at three different angles relative to the sheet rolling direction. A prototype instrument based on these principles has been jointly developed by researchers at Ford Motor Company and National Institute of Standards and Technology (NIST). At present, there are correlations between ultrasonic and mechanical measurements of r̄. The ultrasonic measurements generally agree with mechanical measurements to 0.1 or better. A method based on metallurgical theories is being developed to use ultrasonic velocity measure-ments to predict not only r̄, but individual r values. To date, all measurements have been made on static sheet. We are currently developing a device to move sheet metal at controlled velocity.
Technical Paper

Material Model Selection for Crankshaft Deep Rolling Process Numerical Simulation

2020-04-14
2020-01-1078
Residual stress prediction arising from manufacturing processes provides paramount information for the fatigue performance assessment of components subjected to cyclic loading. The determination of the material model to be applied in the numerical model should be taken carefully. This study focuses on the estimation of residual stresses generated after deep rolling of cast iron crankshafts. The researched literature on the field employs the available commercial material codes without closer consideration on their reverse loading capacities. To mitigate this gap, a single element model was used to compare potential material models with tensile-compression experiments. The best fit model was then applied to a previously developed crankshaft deep rolling numerical model. In order to confront the simulation outcomes, residual stresses were measured in two directions on real crankshaft specimens that passed through the same modeled deep rolling process.
Journal Article

Full-Vehicle Model Development for Prediction of Fuel Consumption

2013-04-08
2013-01-1358
A predictive model of a specific vehicle was modeled in the system-level physical modeling tool, MapleSim, for performance and fuel consumption prediction of a full vehicle powertrain, driving a multi-body chassis model with tire models. The project also includes investigation into overall fuel efficiency and effect on vehicle handling for different drive cycles. The goals of this project were to investigate: 1) the relationships between the forces at tire/road interfaces during various drive cycles and the fuel efficiency of a vehicle, and 2) the interaction between the powertrain and the chassis of the vehicle. To accomplish these goals, a complete vehicle model was created in the lumped-parameter physical modeling tool, MapleSim. A great deal of effort has gone into using real parameters and to assure that some mathematical rigour has been employed in its development.
Journal Article

A New Control Strategy for Electric Power Steering on Low Friction Roads

2014-04-01
2014-01-0083
In vehicles equipped with conventional Electric Power Steering (EPS) systems, the steering effort felt by the driver can be unreasonably low when driving on slippery roads. This may lead inexperienced drivers to steer more than what is required in a turn and risk losing control of the vehicle. Thus, it is sensible for tire-road friction to be accounted for in the design of future EPS systems. This paper describes the design of an auxiliary EPS controller that manipulates torque delivery of current EPS systems by supplying its motor with a compensation current controlled by a fuzzy logic algorithm that considers tire-road friction among other factors. Moreover, a steering system model, a nonlinear vehicle dynamics model and a Dugoff tire model are developed in MATLAB/Simulink. Physical testing is conducted to validate the virtual model and confirm that steering torque decreases considerably on low friction roads.
Technical Paper

A Step Towards CO2-Neutral Aviation

2007-09-17
2007-01-3790
An approximation method for evaluation of the caloric equations used in combustion chemistry simulations is described. The method is applied to generate the equations of specific heat, static enthalpy, and Gibb's free energy for fuel mixtures of interest to gas turbine engine manufacturers. Liquid-phase fuel properties are also derived. The fuels include JP-8, synthetic fuel, and two fuel blends consisting of a mixture of JP-8 and synthetic fuel. The complete set of fuel property equations for both phases are implemented into a computational fluid dynamics (CFD) flow solver database, and multi-phase, reacting flow simulations of a well-tested liquid-fueled combustor are performed. The simulations are a first step in understanding combustion system performance and operational issues when using alternate fuels, at practical engine operating conditions.
Technical Paper

Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels

2007-04-16
2007-01-0201
Computational fluid dynamic (CFD) simulations that include realistic combustion/emissions chemistry hold the promise of significantly shortening the development time for advanced high-efficiency, low-emission engines. However, significant challenges must be overcome to realize this potential. This paper discusses these challenges in the context of diesel combustion and outlines a technical program based on the use of surrogate fuels that sufficiently emulate the chemical complexity inherent in conventional diesel fuel.
Technical Paper

Effect of Cross Flow on Performance of a PEM Fuel Cell

2007-04-16
2007-01-0697
A serpentine flow channel is one of the most common and practical channel layouts for a PEM fuel cell since it ensures the removal of water produced in a cell. While the reactant flows along the flow channel, it can also leak or cross to neighboring channels via the porous gas diffusion layer due to a high pressure gradient. Such a cross flow leads to effective water removal in a gas diffusion layer thus enlarging the active area for reaction although this cross flow has largely been ignored in previous studies. In this study, neutron radiography is applied to investigate the liquid water accumulation and its effect on the performance of a PEM fuel cell. Liquid water tends to accumulate in the gas diffusion layer adjacent to the flow channel area while the liquid water formed in the gas diffusion layer next to the channel land area seems to be effectively removed by the cross leakage flow between the adjacent flow channels.
Technical Paper

Implementation and Optimization of a Fuel Cell Hybrid Powertrain

2007-04-16
2007-01-1069
A fuel cell hybrid powertrain design is implemented and optimized by the University of Waterloo Alternative Fuels Team for the ChallengeX competition. A comprehensive set of bench-top and in-vehicle validation results are used to generate accurate fuel cell vehicle models for SIL/HIL control strategy testing and tuning. The vehicle is brought to a “99% buy-off” level of production readiness, and a detailed crashworthiness analysis is performed. The vehicle performance is compared to Vehicle Technical Specifications (VTS).
X