Refine Your Search

Topic

Author

Affiliation

Search Results

Video

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

2012-06-18
Currently, two consolidated aftertreatment technologies are available for the reduction of NOx emissions from diesel engines: Urea SCR (Selective Catalytic Reduction) systems and LNT (Lean NOx Trap) systems. Urea SCR technology, which has been widely used for many years at stationary sources, is becoming nowadays an attractive alternative also for light-duty diesel applications. However, SCR systems are much more effective in NOx reduction efficiency at high load operating conditions than light load condition, characterized by lower exhaust gas temperatures.
Journal Article

Study on a High Torque Density Motor for an Electric Traction Vehicle

2009-04-20
2009-01-1337
A compact and high performance electric motor, called the 3D motor and designed to achieve output torque density of 100 Nm/L, was developed for use on electric vehicles and hybrid electric vehicles. The motor adopts an axial flux configuration, consisting of a disk-shaped stator sandwiched between two disk-shaped rotors with permanent magnets. It also adopts 9-phase current with a fractional slot combination, both of which increase the torque density. The rated torque output of this high power-density motor is achieved by applying a hybrid cooling system comprising a water jacket on the outer case of the stator and oil dispersion into the air gaps. The mechanical strength of the rotors against centrifugal force and that of the stator against torque exertion were confirmed in mechanical experiments. Several measures such as flux barriers, a chamfered rotor rim, parallel windings, and radially laminated cores were adopted to suppress losses.
Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Journal Article

Advanced Design of Variable Compression Ratio Engine with Dual Piston Mechanism

2009-04-20
2009-01-1046
A Dual Piston Variable Compression Ratio (VCR) engine has been newly developed. In order to ensure the strength of the Dual Piston, the design guidelines were established. There are two advantages of this design. One is the compactness and the compatibility with a mass production engine block. Another is less power consumption required during compression ratio switching. However, the durability is a challenge for this design because of the impact load during the switching driven by the inertial force of a reciprocating piston. In order to achieve a durable configuration, it was necessary to consider the dynamics of the stress after impact, from analysis of the impacting process during the switching. The analysis of stress and deformation mode was improved in accuracy by using Computer Aided Engineering (CAE) in the designing process.
Journal Article

Connected Vehicle Accelerates Green Driving

2010-10-19
2010-01-2315
After the turn of the century, growing social attention has been paid to environmental concerns, especially the reduction of greenhouse gas emissions and it comes down to a personal daily life concern which will affect the purchasing decision of vehicles in the future. Among all the sources of greenhouse gas emissions, the transportation industry is the primary target of reduction and almost every automotive company pours unprecedented amounts of money to reengineer the vehicle technologies for better fuel efficiency and reduced CO2 emission. Besides those efforts paid for sheer improvements of genuine vehicle technologies, NISSAN testified that “connectivity” with outside servers contributed a lot to reduce fuel consumption, thus the less emission of GHG, with two major factors; 1. detouring the traffic congestions with the support of probe-based real-time traffic information and 2. providing Eco-driving advices for the better driving behavior to prompt the better usage of energy.
Journal Article

Development of New V6 3.5L Gasoline Engine for ACURA RLX

2013-04-08
2013-01-1728
Honda has developed a new next-generation 3.5 L V6 gasoline engine using our latest Earth Dreams Technology. The overall design objective for the engine was to reduce CO₂ emissions and provide driving exhilaration. The Earth Dreams Technology concept is to increase fuel economy while reducing emissions. To achieve this and provide an exhilarating driving experience, 3-stage Variable Valve Timing and Lift Electronic Control (VTEC) was combined with the Variable Cylinder Management (VCM) system. This valve train technology in conjunction with Direct Injection (DI), resulted in dramatic improvements in output (a 3.3% increase) and combined mode fuel economy (20% reduction). Helping to achieve Midsize Luxury Sedan level NV, a new mount system was developed to reduce engine vibrations during three-cylinder-mode operation. In this paper, we will explain the 3-stage VTEC with VCM + DI system, friction reducing technology, and the structure and benefit of the new engine mount system.
Journal Article

Extension of Lean Burn Range by Intake Valve Offset

2013-10-15
2013-32-9032
Using a 109.2 cm3, four-stroke, single-cylinder, two-valve gasoline engine, improvement of fuel economy by extension of lean burn range has been attempted with invented way to intensify tumble flow from a simple mechanical arrangement. With a part of the intake valve was jutted out beyond the perimeter of the cylinder bore, the masking effects from the valve recess on top of the cylinder sleeve created a strong tumble flow, which enabled lean burn at an air fuel ratio leaner than the conventional design by two points. The motorcycle equipped with this engine attained better fuel economy by 5.7% to the base model when measured in Indian Driving Cycle (IDC). The outward-laid intake valve also increased the clearance from the exhaust valve, which enabled use of a large-diameter intake valve to minimize the reduction of maximum power.
Journal Article

A Study of Controlled Auto-Ignition in Small Natural Gas Engines

2013-10-15
2013-32-9098
Research has been conducted on Controlled Auto-Ignition (CAI) engine with natural gas. CAI engine has the potential to be highly efficient and to produce low emissions. CAI engine is potentially applicable to automobile engine. However due to narrow operating range, CAI engine for automobile engine which require various speed and load in real world operation is still remaining at research level. In comparison some natural gas engines for electricity generation only require continuous operation at constant load. There is possibility of efficiency enhancement by CAI combustion which is running same speed at constant load. Since natural gas is primary consisting of methane (CH4), high auto-ignition temperature is required to occur stable auto-ignition. Usually additional intake heat required to keep stable auto-ignition. To keep high compression temperature, single cylinder natural gas engine with high compression ratio (CR=26) was constructed.
Journal Article

Evaluation of the Performance of a Boosted HCCI Gasoline Engine with Blowdown Supercharge System

2013-10-15
2013-32-9172
HCCI combustion can realize low NOx and particulate emissions and high thermal efficiency. Therefore, HCCI combustion has a possibility of many kinds of applications, such as an automotive powertrain, general-purpose engine, motorcycle engine and electric generator. However, the operational range using HCCI combustion in terms of speed and load is restricted because the onset of ignition and the heat release rate cannot be controlled directly. For the extension of the operational range using either an external supercharger or a turbocharger is promising. The objective of this research is to investigate the effect of the intake pressure on the HCCI high load limit and HCCI combustion characteristics with blowdown supercharging (BDSC) system. The intake pressure (Pin) and temperature (Tin) were varied as experimental parameters. The intake pressure was swept from 100 kPa (naturally aspirated) to 200 kPa using an external mechanical supercharger.
Journal Article

Durability Design Method of New Stopper Bush Using New Theory (Friction and Spring) for Electric Power Steering

2014-04-01
2014-01-0046
In the automobile industries, weight reduction has been investigated to improve fuel efficiency together with reduction of CO2 emission. In such circumstance, it becomes necessity to make an electric power steering (EPS) more compact and lightweight. In this study, we aimed to have a smaller and lighter EPS gear size by focusing on an impact load caused at steering end. In order to increase the shock absorption energy without increase of stopper bush size, we propose new theory of impact energy absorption by not only spring function but also friction, and a new stopper bush was designed on the basis of the theory. The profile of the new stopper bush is cylinder form with wedge-shaped grooves, and when the new stopper bush is compressed by the end of rack and the gear housing at steering end, it enables to expand the external diameter and produce friction. In this study, we considered the durability in the proposed profile.
Journal Article

New Theoretical Approach for Weight Reduction on Cylinder Head

2015-04-14
2015-01-0495
Designing a lightweight and durable engine is universally important from the standpoints of fuel economy, vehicle dynamics and cost. However, it is challenging to theoretically find an optimal solution which meets both requirements in products such as the cylinder head, to which various thermal loads and mechanical loads are simultaneously applied. In our research, we focused on “non-parametric optimization” and attempted to establish a new design approach derived from the weight reduction of a cylinder head. Our optimization process consists of topology optimization and shape optimization. In the topology optimization process, we explored an optimal structure with the theoretically-highest stiffness in the given design space. This is to provide an efficient structure for pursuing both lightweight and durable characteristics in the subsequent shape optimization process.
Journal Article

Study of High-Compression-Ratio Engine Combined with an Ethanol-Gasoline Fuel Separation System

2014-10-13
2014-01-2614
Bio-ethanol is used in many areas of the world as ethanol blended gasoline at low concentrations such as “E10 gasoline”. In this study, a method was examined to effectively use this small amount of ethanol within ethanol blended gasoline to improve thermal efficiency and high-load performance in a high-compression-ratio engine. Ethanol blended gasoline was separated into high-concentration ethanol fuel and gasoline using a fuel separation system employing a membrane. High-ethanol-concentration fuel was selectively used at high-load conditions to suppress knocking. In this system, a method to decrease ethanol consumption is necessary to cover the wide range of engine operation. Lower ethanol consumption could be achieved by Miller-cycle operation because decrease of the effective compression ratio suppresses knocking. However, high-load operation was limited due to the decrease in intake air volume with Miller-cycle operation.
Journal Article

Application of Engine Load Estimation Method Using Crank Angular Velocity Variation to Spark Advance Control

2014-11-11
2014-32-0065
The technology to estimate engine load using the amplitude of crankshaft angular velocity variation during a cycle, which is referred to as “Δω (delta omega)”, in a four-stroke single-cylinder gasoline engine has been established in our former studies. This study was aimed to apply this technology to the spark advance control system for small motorcycles. The cyclic variation of the Δω signal, which affects engine load detection accuracy, was a crucial issue when developing the system. To solve this issue, filtering functions that can cope with various running conditions were incorporated into the computation process that estimates engine loads from Δω signals. In addition, the system made it possible to classify engine load into two levels without a throttle sensor currently used. We have thus successfully developed the new spark advance system that is controlled in accordance with the engine speed and load.
Technical Paper

Development of JASO GLV-1 0W-8 Low Viscosity Engine Oil for Improving Fuel Efficiency considering Oil Consumption and Engine Wear Performance

2020-04-14
2020-01-1423
Engine oil with viscosity lower than 0W-16 has been needed for improving fuel efficiency in the Japanese market. However, lower viscosity oil generally has negative aspects with regard to oil consumption and anti-wear performance. The technical challenges are to reduce viscosity while keeping anti-wear performance and volatility level the same as 0W-20 oil. They have been solved in developing a new engine oil by focusing on the molybdenum dithiocarbamate friction modifier and base oil properties. This paper describes the new oil that supports good fuel efficiency while reliably maintaining other necessary performance attributes.
Technical Paper

The Development of JASO GLV-1 Next Generation Low Viscosity Automotive Gasoline Engine Oils Specification

2020-04-14
2020-01-1426
It is well understood that using lower viscosity engine oils can greatly improve fuel economy [1, 2, 3, 4]. However, it has been impossible to evaluate ultra-low viscosity engine oils (SAE 0W-12 and below) utilizing existing fuel economy test methods. As such, there is no specification for ultra-low viscosity gasoline engine oils [5]. We therefore developed firing and motored fuel economy test methods for ultra-low viscosity oils using engines from Japanese automakers [6, 7, 8]. This was done under the auspices of the JASO Next Generation Engine Oil Task Force (“TF” below), which consists mainly of Japanese automakers and entities working in the petroleum industry. Moreover, the TF used these test methods to develop the JASO GLV-1 specification for next-generation ultra-low viscosity automotive gasoline engine oils such as SAE 0W-8 and 0W-12. In developing the JASO GLV-1 specification, Japanese fuel economy tests and the ILSAC engine tests for evaluating engine reliability were used.
Journal Article

A Study of a Multistage Injection Mechanism for Improving the Combustion of Direct-Injection Gasoline Engines

2015-04-14
2015-01-0883
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio for improving thermal efficiency and downsizing the engine based on fuel-efficient operating conditions are good examples of technologies for enhancing gasoline engine fuel economy. A direct-injection system is adopted for most of these engines. Direct injection can prevent knocking by lowering the in-cylinder temperature through fuel evaporation in the cylinder. Therefore, direct injection is highly compatible with downsized engines that frequently operate under severe supercharging conditions for improving fuel economy as well as with high compression ratio engines for which susceptibility to knocking is a disadvantage.
Journal Article

Advanced Technology for Dry Multi-Plate Clutch in FWD HEV Transmission (JATCO CVT8 HYBRID)

2015-04-14
2015-01-1094
There has been a growing need in recent years to further improve vehicle fuel efficiency and reduce CO2 emissions. JATCO began mass production of a transmission for rear-wheel-drive (RWD) hybrid vehicle with Nissan in 2010, which was followed by the development of a front-wheel-drive (FWD) hybrid system (JATCO CVT8 HYBRID) for use on a midsize SUV in the U.S. market. While various types of hybrid systems have been proposed, the FWD system adopts a one-motor two-clutch parallel hybrid topology which is also used on the RWD hybrid. This high-efficiency system incorporates a clutch for decoupling the transmission of power between the engine and the motor. The hybrid system was substantially downsized from that used on the RWD vehicle in order to mount it on the FWD vehicle. This paper describes various seal technologies developed for housing the dry multi-plate clutch inside the motor, which was a key packaging technology for achieving the FWD hybrid system.
Journal Article

Development of a New Pressure Measurement Technique and PIV to Validate CFD for the Aerodynamics of Full-scale Vehicles

2016-04-05
2016-01-1623
In the early stages of aerodynamic development of commercial vehicles, the aerodynamic concept is balanced with the design concept using CFD. Since this development determines the aerodynamic potential of the vehicle, CFD with high accuracy is needed. To improve its accuracy, spatial resolution of CFD should be based on flow phenomenon. For this purpose, to compare aerodynamic force, pressure profile and velocity vector map derived from CFD with experimental data is important, but there are some difficulties to obtain pressure profile and velocity vector map for actual vehicles. At the point of pressure measurement for vehicles, installation of pressure taps to the surface of vehicle, i.e., fuel tank and battery, is a problem. A new measurement method developed in this study enables measurement of surface pressure of any desired points. Also, the flexibility of its shape and measuring point makes the installation a lot easier than the conventional pressure measurement method.
Journal Article

A Study of Combustion Technology for a High Compression Ratio Engine: The Influence of Combustion Chamber Wall Temperature on Knocking

2016-04-05
2016-01-0703
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio is an example of a technology for improving the thermal efficiency of gasoline engines. A significant issue of a high compression ratio engine for improving fuel economy and low-end torque is prevention of knocking under a low engine speed. Knocking is caused by autoignition of the air-fuel mixture in the cylinder and seems to be largely affected by heat transfer from the intake port and combustion chamber walls. In this study, the influence of heat transfer from the walls of each part was analyzed by the following three approaches using computational fluid dynamics (CFD) and experiments conducted with a multi-cooling engine system. First, the temperature rise of the air-fuel mixture by heat transfer from each part was analyzed.
Journal Article

In-Situ Measurement and Numerical Solution of Main Journal Bearing Lubrication in Actual Engine Environment

2016-04-05
2016-01-0894
A simple method is frequently used to calculate a reciprocating engine’s bearing load from the measured cylinder pressure. However, it has become apparent that engine downsizing and weight reduction cannot be achieved easily if an engine is designed based on the simple method. Because of this, an actual load on a bearing was measured, and the measured load values were compared with a bearing load distribution calculated from cylinder pressure. As a result, it was found that some of actual loads were about half of the calculated ones at certain crank angles. The connecting rod’s elastic deformation was focused on as a factor behind such differences, and the rod’s deformation due to the engine’s explosion load was studied. As a result, it was found that the rod part of the engine’s connecting rod was bent by 0.2 mm and became doglegged. Additional investigation regarding these findings would allow further engine downsizing.
X