Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Study of Drag Reduction Devices for Production Pick-up Trucks

2017-03-28
2017-01-1531
This paper describes a study of drag reduction devices for production pick-up trucks with a body-on-frame structure using full-scale wind tunnel testing and Computational Fluid Dynamics (CFD) simulations. First, the flow structure around a pick-up truck was investigated and studied, focusing in particular on the flow structure between the cabin and tailgate. It was found that the flow structure around the tailgate was closely related to aerodynamic drag. A low drag flow structure was found by flow analysis, and the separation angle at the roof end was identified as being important to achieve the flow structure. While proceeding with the development of a new production model, a technical issue of the flow structure involving sensitivity to the vehicle velocity was identified in connection with optimization of the roof end shape. (1)A tailgate spoiler was examined for solving this issue.
Technical Paper

Utilization of Dual Fuel Injection System for Diesel Engine—IDIS (Part II)

1984-09-01
841080
This paper is the part II of the report of IDIS (Isuzu Dual Fuel Injection System) IDIS was applied to 5.8 liter L-6 DI diesel engine. The outlines of improved and simplified system, rate of alcohol blend, exhaust emission and performance of the engine were shown in the case of methanol blend as well as ethanol blend. For preventing the torque deviation just after start and end of alcohol blend caused by difference of calorific values between alcohol and diesel fuel, improved system with additional check valve was developed. It was confirmed that replacement of about 30% of diesel fuel by alcohol was possible without any fundamental problems. Basically no modification of the engine was required except the adoptions of new fuel tank and fuel line with low pressure pump for alcohol, some check valves and magnetic valves, a microswitch on the fuel lever and the new delivery valves with increased retraction volume.
Technical Paper

Sources of Hydrocarbon Emissions from a Small Direct Injection Diesel Engine

1987-09-01
871613
The purpose of this paper is to clarify the mechanisms of unburnt hydrocarbon (HC) emissions from a small direct - injection (DI) diesel engine. HC emission levels of small DI diesel engines are considerably higher than those of corresponding indirect - injection (IDI) diesel engines, even when sacless injection nozzles that are effective in reducing HC emissions are installed on them. In this study, analytical engine tests were performed to evaluate the relative significance of various potential sources of HC emissions from a small DI diesel engine equipped with sacless type injectors.
X