Refine Your Search

Topic

Search Results

Journal Article

Loading Path Dependence of Forming Limit Diagram of a TRIP800 Steel

2011-04-12
2011-01-0019
In this paper, the microstructure-based finite element modeling method is used in investigating the loading path dependence of formability of transformation induced plasticity (TRIP) steels. For this purpose, the effects of different loading path on the forming limit diagrams (FLD) of TRIP steels are qualitatively examined using the representative volume element (RVE) of a commercial TRIP800 steel. First, the modeling method was introduced, where a combined isotropic/kinematic hardening rule is adopted for the constituent phases in order to correctly describe the cyclic deformation behaviors of TRIP steels during the forming process with combined loading paths which may include the unloading between the two consecutive loadings. Material parameters for the constituent phases remained the same as those in the authors' previous study [ 1 ] except for some adjustments for the martensite phase due to the introduction of the new combined hardening rule.
Journal Article

Advancements and Opportunities for On-Board 700 Bar Compressed Hydrogen Tanks in the Progression Towards the Commercialization of Fuel Cell Vehicles

2017-03-28
2017-01-1183
Fuel cell vehicles are entering the automotive market with significant potential benefits to reduce harmful greenhouse emissions, facilitate energy security, and increase vehicle efficiency while providing customer expected driving range and fill times when compared to conventional vehicles. One of the challenges for successful commercialization of fuel cell vehicles is transitioning the on-board fuel system from liquid gasoline to compressed hydrogen gas. Storing high pressurized hydrogen requires a specialized structural pressure vessel, significantly different in function, size, and construction from a gasoline container. In comparison to a gasoline tank at near ambient pressures, OEMs have aligned to a nominal working pressure of 700 bar for hydrogen tanks in order to achieve the customer expected driving range of 300 miles.
Technical Paper

Effects of Manufacturing Processes and In-Service mperature Variations on the Properties of TRIP Steels

2007-04-16
2007-01-0793
This paper examines some key aspects of the manufacturing process that “ Transformation Induced Plasticity” (TRIP) steels would be exposed to, and systematically evaluate how the forming and thermal histories affect final strength and ductility of the material. We evaluate the effects of in-service temperature variations, such as under hood and hot/cold cyclic conditions, to determine whether these conditions influence final strength, ductility and energy absorption characteristics of several available TRIP steel grades. As part of the manufacturing thermal environment evaluations, stamping process thermal histories are included in the studies. As part of the in-service conditions, different pre-straining levels are included. Materials from four steel suppliers are examined. The thermal/straining history versus material property relationship is established over a full range of expected thermal histories and selected loading modes.
Technical Paper

Modeling of Failure Modes Induced by Plastic Strain Localization in Dual Phase Steels

2008-04-14
2008-01-1114
Microstructure level inhomogeneities between the harder martensite phase and the softer ferrite phase render the dual phase (DP) steels more complicated failure mechanisms and associated failure modes compared to the conventionally used low alloy homogenous steels. This paper examines the failure mode DP780 steel under different loading conditions using finite element analyses on the microstructure levels. Micro-mechanics analyses based on the actual microstructures of DP steel are performed. The two-dimensional microstructure of DP steel was recorded by scanning electron microscopy (SEM). The plastic work hardening properties of the ferrite phase was determined by the synchrotron-based high-energy X-ray diffraction technique. The work hardening properties of the martensite phase were calibrated and determined based on the uniaxial tensile test results. Under different loading conditions, different failure modes are predicted in the form of plastic strain localization.
Technical Paper

Characterization of the Fracture Toughness of TRIP 800 Sheet Steels Using Microstructure-Based Finite Element Analysis

2009-04-20
2009-01-0800
Recently, several studies conducted by automotive industry revealed the tremendous advantages of Advanced High Strength Steels (AHSS). TRansformation Induced Plasticity (TRIP) steel is one of the typical representative of AHSS. This kind of materials exhibits high strength as well as high formability. Analyzing the crack behaviour in TRIP steels is a challenging task due to the microstructure level inhomogeneities between the different phases (ferrite, bainite, austenite, martensite) that constitute these materials. This paper aims at investigating the fracture resistance of TRIP steels. For this purpose, a micromechanical finite element model is developed based on the actual microstructure of a TRIP 800 steel. Uniaxial tensile tests on TRIP 800 sheet notched specimens were also conducted and tensile properties and R-curves (Resistance curves) were determined.
Technical Paper

Effects of Forming Induced Phase Transformation on Crushing Behavior of TRIP Steel

2010-04-12
2010-01-0216
In this paper, results of finite element crash simulation are presented for a TRIP steel side rail with and without considering the phase transformation during forming operations. A homogeneous phase transformation model is adapted to model the mechanical behavior of the austenite-to-martensite phase. The forming process of TRIP steels is simulated with the implementation of the material model. The distribution and volume fraction of the martensite in TRIP steels may be greatly influenced by various factors during forming process and subsequently contribute to the behavior of the formed TRIP steels during the crushing process. The results indicate that, with the forming induced phase transformation, higher energy absorption of the side rail can be achieved. The phase transformation enhances the strength of the side rail.
Technical Paper

Exhaust Aftertreatment Research for Heavy Vehicles

2001-05-14
2001-01-2064
The Office of Heavy Vehicle Technologies supports research to enable high-efficiency diesel engines to meet future emissions regulations, thus clearing the way for their use in light trucks as well as continuing as the most efficient powerplant for freight-haulers. Compliance with Tier 2 emission regulations for light-duty vehicles will require effective exhaust emission controls (aftertreatment) for diesels in these applications. Diesel-powered heavy trucks face a similar situation for the 2007 regulations announced by EPA in December 2000. DOE laboratories are working with industry to improve emission control technologies in projects ranging from application of new diagnostics for elucidating key mechanisms, to development and evaluation of prototype devices. This paper provides an overview of these R&D efforts, with examples of key findings and developments.
Technical Paper

Integrated Computational Materials Engineering (ICME) Multi-Scale Model Development for Advanced High Strength Steels

2017-03-28
2017-01-0226
This paper presents development of a multi-scale material model for a 980 MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning heat treatment (QP980), based on integrated computational materials engineering principles (ICME Model). The model combines micro-scale material properties defined by the crystal plasticity theory with the macro-scale mechanical properties, such as flow curves under different loading paths. For an initial microstructure the flow curves of each of the constituent phases (ferrite, austenite, martensite) are computed based on the crystal plasticity theory and the crystal orientation distribution function. Phase properties are then used as an input to a state variable model that computes macro-scale flow curves while accounting for hardening caused by austenite transformation into martensite under different straining paths.
Technical Paper

Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications

2012-04-16
2012-01-1229
Due to its high hydrogen storage capacity (up to 16% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, solvated AB and alane were developed and evaluated at Pacific Northwest National Laboratory (PNNL) to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.
Technical Paper

Relationship between Material Properties and Local Formability of DP980 Steels

2012-04-16
2012-01-0042
A noticeable degree of inconsistent forming behaviors has been observed for the 1st generation advanced high strength steels (AHSS) in production, and they appear to be associated with the inherent microstructural-level inhomogeneities for various AHSS. This indicates that the basic material property requirements and screening methods currently used for the mild steels and high strength low alloys (HSLA) are no longer sufficient for qualifying today's AHSS. In order to establish more relevant material acceptance criteria for AHSS, the fundamental understandings on key mechanical properties and microstructural features influencing the local formability of AHSS need to be developed. For this purpose, in this study, DP980 was selected as model steels and eight different types of DP980 sheet steels were acquired from various steel suppliers.
Technical Paper

Failure Predictions for Aluminum Tube Hydroforming Processes

2006-04-03
2006-01-0543
Two analytical tools for failure predictions in free-expansion tube hydroforming, namely “Process Window Diagram” (PWD) and forming limit curve (FLC), are discussed in this paper. The PWD represents the incipient failure conditions of buckling, wrinkling and bursting of free-expansion tube hydroforming processes in the plane of process parameters, e.g. internal pressure versus axial compression. The PWD is a useful tool for design engineers to quickly assess part producibility and process design for tube hydroforming. An attempt is also made to draw the differences between FLCs for sheet and tube so that the appropriate FLC could be used to estimate the bursting or fracture limits in free-expansion tube hydroforming processes.
Technical Paper

Effects of Fusion Zone Size on Failure Modes and Performance of Advanced High Strength Steel Spot Welds

2006-04-03
2006-01-0531
This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS). DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pull-out and interfacial fracture. Partial interfacial fracture is also observed. The critical fusion zone sizes to ensure nugget pull-out failure mode are developed for both DP800 and TRIP800 using the limit load based analytical model and the microhardness measurements of the weld cross sections. Static weld strength tests using cross-tension samples were performed on the joint populations with controlled fusion zone sizes. The resultant peak load and energy absorption levels associated with each failure mode were studied using statistical data analysis tools. The results of this study show that the conventional weld size of can not produce nugget pull-out mode for both the DP800 and TRIP800 materials.
Technical Paper

Formability Investigation of Aluminum Extrusions under Hydroforming Conditions

2000-10-03
2000-01-2675
The transportation industry is finding an ever-increasing number of applications for products manufactured using the tubular hydroforming process. Most of the current hydroforming applications use steel tubes. However, with the mounting regulatory pressure to reduce vehicle emissions, aluminum alloys appear attractive as an alternative material to reduce vehicle weight. The introduction of aluminum alloys to tubular hydroforming requires knowledge of their forming limits. The current work investigates the forming limits of AA6061 in both the T4 and T6 tempers under laboratory conditions. These experimental results are compared to theoretical forming limit diagrams calculated via the M-K method. Free hydroforming results and forming limit diagrams are also compared to components produced under commercial hydroforming conditions.
Technical Paper

Effect of Windshield Design on High Speed Impact Resistance

2000-10-03
2000-01-2723
An axisymmetric finite element model is generated to simulate the windshield glass damage propagation subjected to impact loading of a flying object. The windshield glass consists of two glass outer layers laminated by a thin poly-vinyl butyral (PVB) layer. The constitutive behavior of the glass layers is simulated using brittle damage mechanics model with linear damage evolution. The PVB layer is modeled with linear viscoelastic solid. The model is used to predict and examine through-thickness damage evolution patterns on different glass surfaces and cracking patterns for different windshield designs such as variations in thickness and curvatures.
Technical Paper

Probabilistic Failure Prediction for Automotive Windshields Based on Strength and Flaw Distributions

2000-10-03
2000-01-2720
This paper describes a method for predicting structural failure probabilities for automotive windshields. The predictive model is supported by the data from strength tests performed on specimens of automotive glass. Evaluations of stresses can be based on finite element calculations, or measurements of the residual stresses that arise from fabrication. Failure probabilities for each subregion of a windshield are estimated from the local state of stress, the surface area or length (for edge elements) of the subregion, and statistical distributions of glass strengths. Example calculations are presented that show the relative contributions of edge stresses, surface stresses and residual stresses to calculated failure probabilities.
Technical Paper

Effect of Glazing System Parameters on Glazing System Contribution to a Lightweight Vehicle's Torsional Stiffness and Weight

2000-10-03
2000-01-2719
A finite element model of a lightweight vehicle body-in-white has been developed to study the contribution of a lightweight vehicle's glazing system to its overall structural rigidity. This paper examines the effect of the glazing thickness and glazing molding stiffness on the glazing system contribution to a lightweight vehicle's torsional rigidity. The individual stiffness contributions of the front and back glazing were determined, as well as the weight of the glazing as a function of its thickness. In the first set of analyses detailed in this paper, the torsional and bending loadcase was investigated by comparing the baseline model to a no-glass model. It was shown that the glazing system contributes significantly to the overall structural rigidity of the auto-body. The difference was mainly in the torsional rigidity which was 12.4% more rigid than the no-glass model. The bending rigidity was only increased by 0.5% in the glazing model.
Technical Paper

Measurement of Biaxial Strength of New vs. Used Windshields

2000-10-03
2000-01-2721
This paper presents the strength data for conventional automotive windshields in both the new and used conditions. More specifically, the biaxial strength of outer surface of curved and symmetrically laminated windshield, measured in biaxial flexure, is reported. The relative contributions of inplane membrane stress, which can be significant for new windshields, and bending stress are quantified with the aid of strain gauge rosettes mounted on both the outer and inner surfaces of windshield. The strength distribution for new and used windshields, based on Weibull distribution function, is found to be multimodal indicating more than one family of surface flaws. Depending on handling damage during manufacturing, assembly and installation processes, the low strength region of new windshields can approach that of used windshields with 50,000+ road miles!
Technical Paper

Combined Synchrotron X-Ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-Assisted Steels

2016-04-05
2016-01-0419
The strain-induced diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing.
Technical Paper

Effects of Constituent Properties on Performance Improvement of a Quenching and Partitioning Steel

2014-04-01
2014-01-0812
In this paper, a two-dimensional microstructure-based finite element modeling method is adopted to investigate the effects of material parameters of the constituent phases on the macroscopic tensile behavior of Q&P steel and to perform a computational material design approach for performance improvement. For this purpose, a model Q&P steel is first produced and various experiments are then performed to characterize the model steel. Actual microstructure-based model is generated based on the information from EBSD, SEM and nano-indentation test, and the material properties for the constituent phases in the model are determined based on the initial constituent properties from HEXRD test and the subsequent calibration of model predictions to tensile test results. The influence of various material parameters of the constituents on the macroscopic behavior is then investigated.
Technical Paper

Development of a Non-Thermal Plasma Reactor Electrical Model for Optimum NOx Removal Performance

2000-10-16
2000-01-2893
A double dielectric barrier discharge reactor driven by an alternating voltage is a relatively simple approach to promote oxidation of NO to NO2 for subsequent reduction in a catalyst bed. The chemical performance of such a non-thermal plasma reactor is determined by its current and electric field behavior in the gap, and by the fraction of the current carried by electrons, because the key reactants which initiate the NO oxidation and accompanying chemical changes are produced there, mostly by electron impact. We have tried to determine by models and experiments the bounds on performance of double dielectric barrier reactors and guidelines for optimization. Models reported here predict chemical results from time-resolved applied voltage and series sense capacitor data.
X