Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Waste Energy Driven Air Conditioning System (WEDACS)

2009-09-13
2009-24-0063
In the port injected Spark Ignition (SI) engine, the single greatest part load efficiency reducing factor are energy losses over the throttle valve. The need for this throttle valve arises from the fact that engine power is controlled by the amount of air in the cylinders, since combustion occurs stoichiometrically in this type of engine. In WEDACS (Waste Energy Driven Air Conditioning System), a technology patented by the Eindhoven University of Technology, the throttle valve is replaced by a turbine-generator combination. The turbine is used to control engine power. Throttling losses are recovered by the turbine and converted to electrical energy. Additionally, when air expands in the turbine, its temperature decreases and it can be used to cool air conditioning fluid. As a result, load of the alternator and air conditioning compressor on the engine is decreased or even eliminated, which increases overall engine efficiency.
Journal Article

Influence of a Multispark Ignition System on the inflammation in a Spray-guided Combustion Process

2009-09-13
2009-24-0117
This study describes tests with a fast clocked multispark ignition system intended to improve the stability of inflammation during charge stratification. The advantage of this ignition system is the capability it provides to adjust the number of sparks, the duration of single sparks and the intensity of the primary current. The basic engine test parameters were first set in an optically accessible pressure chamber under conditions approximating an engine. Two strategies were examined to analyze their effect on inflammation in stratified charge mode. On the one hand, the multispark ignition (MSI) system allows implementing an intermittent spark sequence in the spark gap between the spark plug electrodes. On the other hand, precisely timed pulsing of spark energy into the plasma channel during charge motion can generate a very large deflection of the ignition spark.
Journal Article

Direct Injection of High Pressure Gas: Scaling Properties of Pulsed Turbulent Jets

2010-10-25
2010-01-2253
Existing gasoline DI injection equipment has been modified to generate single hole pulsed gas jets. Injection experiments have been performed at combinations of 3 different pressure ratios (2 of which supercritical) respectively 3 different hole geometries (i.e. length to diameter ratios). Injection was into a pressure chamber with optical access. Injection pressures and injector hole geometry were selected to be representative of current and near-future DI natural gas engines. Each injector hole design has been characterized by measuring its discharge coefficient for different Re-levels. Transient jets produced by these injectors have been visualized using planar laser sheet Mie scattering (PLMS). For this the injected gas was seeded with small oil droplets. The corresponding flow field was measured using particle image velocimetry (PIV) laser diagnostics.
Journal Article

Soot Simulation under Diesel Engine Conditions Using a Flamelet Approach

2009-11-02
2009-01-2679
The subject of this work is 3D numerical simulations of combustion and soot emissions for a passenger car diesel engine. The CFD code STAR-CD version 3.26 [1] is used to resolve the flowfield. Soot is modeled using a detailed kinetic soot model described by Mauss [2]. The model includes a detailed description of the formation of polyaromatic hydrocarbons. The coupling between the turbulent flowfield and the soot model is achieved through a flamelet library approach, with transport of the moments of the soot particle size distribution function as outlined by Wenzel et al. [3]. In this work we extended this approach by considering acetylene feedback between the soot model and the combustion model. The model was further improved by using new gas-phase kinetics and new fitting procedures for the flamelet soot library.
Journal Article

The Influence of Fuel Properties on Transient Liquid-Phase Spray Geometry and on Cl-Combustion Characteristics

2009-11-02
2009-01-2774
A transparent HSDI CI engine was used together with a high speed camera to analyze the liquid phase spray geometry of the fuel types: Swedish environmental class 1 Diesel fuel (MK1), Soy Methyl Ester (B100), n-Heptane (PRF0) and a gas-to-liquid derivate (GTL) with a distillation range similar to B100. The study of the transient liquid-phase spray propagation was performed at gas temperatures and pressures typical for start of injection conditions of a conventional HSDI CI engine. Inert gas was supplied to the transparent engine in order to avoid self-ignition at these cylinder gas conditions. Observed differences in liquid phase spray geometry were correlated to relevant fuel properties. An empirical relation was derived for predicting liquid spray cone angle and length prior to ignition.
Journal Article

Modelling of NOx Storage + SCR Exhaust Gas Aftertreatment System with Internal Generation of Ammonia

2010-04-12
2010-01-0887
Combination of an NOx storage and reduction catalyst (NSRC, called also lean NOx trap, LNT) and a catalyst for the selective catalytic reduction of NOx by NH₃ (NH₃-SCR) offers a potential to significantly increase the efficiency of NSRC-based exhaust gas aftertreatment systems. Under most situations the SCR catalyst is able to adsorb the NH₃ peaks generated in the NSRC during the regeneration and utilize it for additional NOx reduction in the course of the consequent lean phase. This synergy becomes more important with the aged NSRC, where generally lower NOx conversions and higher NH₃ yields in wider range of operating temperatures are observed (in comparison with the fresh or de-greened NSRC). In this paper we present global kinetic models for the NSRC (Pt/Ba/Ce/gγ-Al₂O₃ catalyst type) and NH₃-SCR (Fe-ZSM5 catalyst type).
Journal Article

Removal of NOx from Diesel Exhausts: The New “Enhanced NH3-SCR” Reaction

2010-04-12
2010-01-1181
Ammonia/urea-SCR is a mature technology, applied worldwide for the control of NOx emissions in combustion exhausts from thermal power plants, cogeneration units, incinerators and stationary diesel engines and more recently also from mobile sources. However a greater DeNOx activity at low temperatures is desired in order to meet more and more restrictive legislations. In this paper we report transient and steady state data collected over commercial Fe-ZSM-5 and V₂O₅-WO₃/TiO₂ catalysts showing high NOx reduction efficiencies in the 200 - 350°C T-range when NO and ammonia react with nitrates, e.g., in the form of an aqueous solution of ammonium nitrate. Under such conditions a new reaction occurs, the so-called "Enhanced SCR" reaction, 2 NH₃ + 2 NO + NH₄NO₃ → 3 N₂ + 5 H₂O.
Journal Article

Data Driven Estimation of Exhaust Manifold Pressure by Use of In-cylinder Pressure Information

2013-04-08
2013-01-1749
Although the application of cylinder pressure sensors to gain insight into the combustion process is not a novel topic itself, the recent availability of inexpensive in-cylinder pressure sensors has again prompted an upcoming interest for the utilization of the cylinder pressure signal within engine control and monitoring. Besides the use of the in-cylinder pressure signal for combustion analysis and control the information can also be used to determine related quantities in the exhaust or intake manifold. Within this work two different methods to estimate the pressure inside the exhaust manifold are proposed and compared. In contrary to first principle based approaches, which may require time extensive parameterization, alternative data driven approaches were pursued. In the first method a Principle Component Analysis (PCA) is applied to extract the cylinder pressure information and combined with a polynomial model approach.
Journal Article

An Experimental Methodology for Measuring of Aerodynamic Resistances of Heavy Duty Vehicles in the Framework of European CO2 Emissions Monitoring Scheme

2014-04-01
2014-01-0595
Due to the diversity of Heavy Duty Vehicles (HDV), the European CO2 and fuel consumption monitoring methodology for HDVs will be based on a combination of component testing and vehicle simulation. In this context, one of the key input parameters that need to be accurately defined for achieving a representative and accurate fuel consumption simulation is the vehicle's aerodynamic drag. A highly repeatable, accurate and sensitive measurement methodology was needed, in order to capture small differences in the aerodynamic characteristics of different vehicle bodies. A measurement methodology is proposed which is based on constant speed measurements on a test track, the use of torque measurement systems and wind speed measurement. In order to support the development and evaluation of the proposed approach, a series of experiments were conducted on 2 different trucks, a Daimler 40 ton truck with a semi-trailer and a DAF 18 ton rigid truck.
Journal Article

Towards the Use of Eulerian Field PDF Methods for Combustion Modeling in IC Engines

2014-04-01
2014-01-1144
Detailed chemistry and turbulence-chemistry interaction need to be properly taken into account for a realistic combustion simulation of IC engines where advanced combustion modes, multiple injections and stratified combustion involve a wide range of combustion regimes and require a proper description of several phenomena such as auto-ignition, flame stabilization, diffusive combustion and lean premixed flame propagation. To this end, different approaches are applied and the most used ones rely on the well-stirred reactor or flamelet assumption. However, well-mixed models do not describe correctly flame structure, while unsteady flamelet models cannot easily predict premixed flame propagation and triple flames. A possible alternative for them is represented by transported probability density functions (PDF) methods, which have been applied widely and effectively for modeling turbulent reacting flows under a wide range of combustion regimes.
Technical Paper

Numerical Assessment of an After-Treatment System Equipped with a Burner to Speed-Up the Light-Off during Engine Cold Start

2021-09-05
2021-24-0089
In the next years, the upcoming emission legislations are expected to introduce further restrictions on the admittable level of pollutants from vehicles measured on homologation cycles and real drive tests. In this context, the strict control of pollutant emissions at the cold start will become a crucial point to comply with the new regulation standards. This will necessarily require the implementation of novel strategies to speed-up the light-off of the reactions occurring in the after-treatment system, since the cold start conditions are the most critical one for cumulative emissions. Among the different possible technological solutions, this paper focuses on the evaluation of the potential of a burner system, which is activated before the engine start. The hypothetical burner exploits the lean combustion of an air-gasoline mixture to generate a high temperature gas stream which is directed to the catalyst section promoting a fast heating of the substrate.
Technical Paper

Polycyclic Aromatic Hydrocarbons Evolution and Interactions with Soot Particles During Fuel Surrogate Combustion: A Rate Rule-Based Kinetic Model

2021-09-05
2021-24-0086
Modeling combustion of transportation fuels remains a difficult task due to the extremely large number of species constituting commercial gasoline and diesel. However, for this purpose, multi-component surrogate fuel models with a reduced number of key species and dedicated reaction subsets can be used to reproduce the physical and chemical traits of diesel and gasoline, also allowing to perform CFD calculations. Recently, a detailed surrogate fuel kinetic model, named C3 mechanism, was developed by merging high-fidelity sub-mechanisms from different research groups, i.e. C0-C4 chemistry (NUI Galway), linear C6-C7 and iso-octane chemistry (Lawrence Livermore National Laboratory), and monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) (ITV-RWTH Aachen and CRECK modelling Lab-Politecnico di Milano).
Technical Paper

Numerical Investigation of Tonal Noise at Automotive Side Mirrors due to Aeroacoustic Feedback

2020-09-30
2020-01-1514
This paper describes the possibility to resolve aeroacoustic feedback with a commercial 2nd/3rd order finite volume CFD code [1]. After a first comparison to a NACA 0012 test case, tonal noise components of a realistic automotive side view mirror are validated with in-house wind tunnel measurements. A zonal RANS/LES approach is used to ensure a realistic flow around the exterior side mirror mounted on a Mercedes-Benz passenger car. The provided compressible large eddy simulations are using non-reflecting boundary conditions in combination with a sponge zone approach to reduce hydrodynamic fluctuations and are in great accordance to measurements. The possibility of localizing and investigating the underlying feedback mechanism enables the chance for a targeted design of different appropriate remedies, which are finally confirmed by means of experimental comparison.
Technical Paper

Modeling the Effects of the Ignition System on the CCV of Ultra-Lean SI Engines using a CFD RANS Approach

2021-09-21
2021-01-1147
Cycle-To-Cycle Variability (CCV) must be properly considered when modeling the ignition process in SI engines operating with ultra-lean mixtures. In this work, a strategy to model the impact of the ignition type on the CCV was developed using the RANS approach for turbulence modelling, performing multi-cycle simulations for the power-cycle only. The spark-discharge was modelled through a set of Lagrangian particles, introduced along the sparkgap and interacting with the surrounding Eulerian gas flow. Then, at each discharge event, the velocity of each particle was modified with a zero-divergence perturbation of the velocity field with respect to average conditions. Finally, the particles velocity was evolved according to the Simplified Langevin Model (SLM), which keeps memory of the initial perturbation and applies a Wiener process to simulate the stochastic interaction of each channel particle with the surrounding gas flow.
Journal Article

Methods for Measuring, Analyzing and Predicting the Dynamic Torque of an Electric Drive Used in an Automotive Drivetrain

2015-06-15
2015-01-2363
The driving comfort is an important factor for buying decisions. For the interior noise of battery electric vehicles (BEV) high frequency tonal orders are characteristic. They can for example be caused by the gearbox or the electric drive and strongly influence the perception and rating of the interior noise by the customer. In this contribution methods for measuring, analyzing and predicting the excitation by the dynamic torque of the electric drive are presented. The dynamic torque of the electric drive up to 3.5 kHz is measured on a component test bench with the help of high frequency, high precision torque transducer. The analysis of the results for the order of interest shows a good correlation with the acoustic measurements inside the corresponding vehicle. In addition an experimental and numerical modal analysis of the rotor of the electric drive are performed.
Journal Article

Modeling and Numerical Calculation of Snow Particles Entering the Air Intake of an Automobile

2015-04-14
2015-01-1342
A physically based model to predict the amount of snow which is entering the air intake of an automobile is extremely important for the automotive industry. It allows to improve the air intake system in the development state so that new vehicles can be developed in a shorter time. Using an Eulerian/Lagrangian approach within a commercial CFD-software we set up a model and calculated the snow ingress into an air intake of an automobile. In our numerical investigations we considered different particle shapes when calculating the drag coefficient, different coefficients of restitution and different particle sizes. Furthermore two-way coupling was considered. To obtain key parameters for the simulation, we measured the size of snow particles in the Daimler climatic wind tunnel in Sindelfingen by using a microscope and a measuring device from Malvern. Besides we used mechanical snow traps to determine the snow mass flux in the climatic wind tunnel and on a test area in Sweden.
Journal Article

Virtual Cylinder Pressure Sensor for Transient Operation in Heavy-Duty Engines

2015-04-14
2015-01-0872
Cylinder pressure-based combustion control is widely introduced for passenger cars. Benefits include enhanced emission robustness to fuel quality variation, reduced fuel consumption due to more accurate (multi-pulse) fuel injection, and minimized after treatment size. In addition, it enables the introduction of advanced, high-efficient combustion concepts. The application in truck engines is foreseen, but challenges need to be overcome related to durability, increased system costs, and impact on the cylinder head. In this paper, a new single cylinder pressure sensor concept for heavy-duty Diesel engines is presented. Compared to previous studies, this work focuses on heavy-duty Diesel powertrains, which are characterized by a relatively flexible crank shaft in contrast to the existing passenger car applications.
Journal Article

Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel

2016-04-05
2016-01-0696
Fuel lean combustion and exhaust gas dilution are known to increase the thermal efficiency and reduce NOx emissions. In this study, experiments are performed to understand the effect of equivalence ratio on flame kernel formation and flame propagation around the spark plug for different low turbulent velocities. A series of experiments are carried out for propane-air mixtures to simulate engine-like conditions. For these experiments, equivalence ratios of 0.7 and 0.9 are tested with 20 percent mass-based exhaust gas recirculation (EGR). Turbulence is generated by a shrouded fan design in the vicinity of J-spark plug. A closed loop feedback control system is used for the fan to generate a consistent flow field. The flow profile is characterized by using Particle Image Velocimetry (PIV) technique. High-speed Schlieren visualization is used for the spark formation and flame propagation.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

On Road Durability and Performance Test of Diesel Particulate Filter with BS III and BS IV Fuel for Indian Market

2016-04-05
2016-01-0959
The future emission regulation (BS V) in India is expected to create new challenges to meet the particulate matter (PM) limit for diesel cars. The upcoming emission norms will bring down the limit of PM by 80 % when compared to BS IV emission norms. The diesel particulate filter (DPF) is one of the promising technologies to achieve this emission target. The implementation of DPF system into Indian market poses challenges against fuel quality, driving cycles and warranty. Hence, it is necessary to do a detailed on-road evaluation of the DPF system with commercially available fuel under country specific drive cycles. Therefore, we conducted full vehicle durability testing with DPF system which is available in the European market to evaluate its robustness and reliability with BS III fuel (≤350ppm sulfur) & BS IV (≤50ppm sulfur) fuel under real Indian driving conditions.
X