Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Optimal Energy Management Strategy for Energy Efficiency Improvement and Pollutant Emissions Mitigation in a Range-Extender Electric Vehicle

2021-09-05
2021-24-0103
The definition of the energy management strategy for a hybrid electric vehicle is a key element to ensure maximum energy efficiency. The ability to optimally manage the on-board energy sources, i.e., fuel and electricity, greatly affects the final energy consumption of hybrid powertrains. In the case of plug-in series-hybrid architectures, such as Range-Extender Electric Vehicles (REEVs), fuel efficiency optimization alone can result in a stressful operation of the range-extender engine with an excessively high number of start/stops. Nonetheless, reducing the number of start/stops can lead to long periods in which the engine is off, resulting in the after-treatment system temperature to drop and higher emissions to be produced at the next engine start.
Technical Paper

Multitarget Evaluation of Hybrid Electric Vehicle Powertrain Architectures Considering Fuel Economy and Battery Lifetime

2020-06-30
2020-37-0015
Hybrid electric vehicle (HEV) powertrains are characterized by a complex design environment as a result of both the large number of possible layouts and the need for dedicated energy management strategies. When selecting the most suitable hybrid powertrain architecture at an early design stage of HEVs, engineers usually focus solely on fuel economy (directly linked to tailpipe emissions) and vehicle drivability performance. However, high voltage batteries are a crucial component of HEVs as well in terms of performance and cost. This paper introduces a multitarget assessment framework for HEV powertrain architectures which considers both fuel economy and battery lifetime. A multi-objective formulation of dynamic programming is initially presented as an off-line optimal HEV energy management strategy capable of predicting both fuel economy performance and battery lifetime of HEV powertrain layout options.
Journal Article

A Method of Frequency Content Based Analysis of Driving Braking Behavior

2015-04-14
2015-01-1564
Typically, when one thinks of advanced driver assistance systems (ADAS), systems such as Forward Collision Warning (FCW) and Collision Imminent Braking (CIB) come to mind. In these systems driver assistance is provided based on knowledge about the subject vehicle and surrounding objects. A new class of these systems is being implemented. These systems not only use information on the surrounding objects but also use information on the driver's response to an event, to determine if intervention is necessary. As a result of this trend, an advanced level of understanding of driver braking behavior is necessary. This paper presents an alternate method of analyzing driver braking behavior. This method uses a frequency content based approach to study driver braking and allows for the extraction of significantly more data from driver profiles than traditionally would have been done.
Journal Article

Scaling Considerations for Fluidic Oscillator Flow Control on the Square-back Ahmed Vehicle Model

2015-04-14
2015-01-1561
Improvements in highway fuel economy require clever design and novel methods to reduce the drag coefficient. The integration of active flow control devices into vehicle design shows promise for greater reductions in drag coefficient. This paper examines the use of fluidic oscillators for separation control at the rear of an Ahmed vehicle model. A fluidic oscillator is a simple device that generates a sweeping jet output, similar to some windshield wiper spray nozzles, and is increasingly recognized as an efficient means to control separation. In this study, fluidic oscillators were used to blow unsteady air jets and control flow separation on rear boat-tail flaps, achieving drag reductions greater than 70 counts. The method appears to scale favorably to a larger model, and realistic effects such as a rolling road appear to have a small impact on the oscillator's control authority.
Journal Article

A Scalable Modeling Approach for the Simulation and Design Optimization of Automotive Turbochargers

2015-04-14
2015-01-1288
Engine downsizing and super/turbocharging is currently the most followed trend in order to reduce CO2 emissions and increase the powertrain efficiency. A key challenge for achieving the desired fuel economy benefits lies in optimizing the design and control of the engine boosting system, which requires the ability to rapidly sort different design options and technologies in simulation, evaluating their impact on engine performance and fuel consumption. This paper presents a scalable modeling approach for the characterization of flow and efficiency maps for automotive turbochargers. Starting from the dimensional analysis theory for turbomachinery and a set of well-known control-oriented models for turbocharged engines simulation, a novel scalable model is proposed to predict the flow and efficiency maps of centrifugal compressors and radial inflow turbines as function of their key design parameters.
Journal Article

Active Tire Pressure Control (ATPC) for Passenger Cars: Design, Performance, and Analysis of the Potential Fuel Economy Improvement

2018-04-03
2018-01-1340
Active tire pressure control (ATPC) is an automatic central tire inflation system (CTIS), designed, prototyped, and tested at the Politecnico di Torino, which is aimed at improving the fuel consumption, safety, and drivability of passenger vehicles. The pneumatic layout of the system and the designed solution for on board integration are presented. The critical design choices are explained in detail and supported by experimental evidence. In particular, the results of experimental tests, including the characterizations of various pneumatic components in working conditions, have been exploited to obtain a design, which allows reliable performance of the system in a lightweight solution. The complete system has been tested to verify its dynamics, in terms of actuation time needed to obtain a desired pressure variation, starting from the current tire pressure, and to validate the design.
Journal Article

Numerical and Experimental Assessment of a Solenoid Common-Rail Injector Operation with Advanced Injection Strategies

2016-04-05
2016-01-0563
The selection and tuning of the Fuel Injection System (FIS) are among the most critical tasks for the automotive diesel engine design engineers. In fact, the injection strongly affects the combustion phenomena through which controlling a wide range of related issues such as pollutant emissions, combustion noise and fuel efficiency becomes feasible. In the scope of the engine design optimization, the simulation is an efficient tool in order to both predict the key performance parameters of the FIS, and to reduce the amount of experiments needed to reach the final product configuration. In this work a complete characterization of a solenoid ballistic injector for a Light-Duty Common Rail system was therefore implemented in a commercially available one-dimensional computational software called GT-SUITE. The main phenomena governing the injector operation were simulated by means of three sub-models (electro-magnetic, hydraulic and mechanical).
Journal Article

Experimental and Numerical Assessment of Multi-Event Injection Strategies in a Solenoid Common-Rail Injector

2017-09-04
2017-24-0012
Nowadays, injection rate shaping and multi-pilot events can help to improve fuel efficiency, combustion noise and pollutant emissions in diesel engine, providing high flexibility in the shape of the injection that allows combustion process control. Different strategies can be used in order to obtain the required flexibility in the rate, such as very close pilot injections with almost zero Dwell Time or boot shaped injections with optional pilot injections. Modern Common-Rail Fuel Injection Systems (FIS) should be able to provide these innovative patterns to control the combustion phases intensity for optimal tradeoff between fuel consumption and emission levels.
Technical Paper

A Dynamic Programming Algorithm for HEV Powertrains Using Battery Power as State Variable

2020-04-14
2020-01-0271
One of the first steps in powertrain design is to assess its best performance and consumption in a virtual phase. Regarding hybrid electric vehicles (HEVs), it is important to define the best mode profile through a cycle in order to maximize fuel economy. To assist in that task, several off-line optimization algorithms were developed, with Dynamic Programming (DP) being the most common one. The DP algorithm generates the control actions that will result in the most optimal fuel economy of the powertrain for a known driving cycle. Although this method results in the global optimum behavior, the DP tool comes with a high computational cost. The charge-sustaining requirement and the necessity of capturing extremely small variations in the battery state of charge (SOC) makes this state vector an enormous variable. As things move fast in the industry, a rapid tool with the same performance is required.
Technical Paper

The Effects of Varying Penetration Rates of L4-L5 Autonomous Vehicles on Fuel Efficiency and Mobility of Traffic Networks

2020-04-14
2020-01-0137
With the current drive of automotive and technology companies towards producing vehicles with higher levels of autonomy, it is inevitable that there will be an increasing number of SAE level L4-L5 autonomous vehicles (AVs) on roadways in the near future. Microscopic traffic simulators that simulate realistic traffic flow are crucial in studying, understanding and evaluating the fuel usage and mobility effects of having a higher number of autonomous vehicles (AVs) in traffic under realistic mixed traffic conditions including both autonomous and non-autonomous vehicles. In this paper, L4-L5 AVs with varying penetration rates in total traffic flow were simulated using the microscopic traffic simulator Vissim on urban, mixed and freeway roadways. The roadways used in these simulations were replicas of real roadways in and around Columbus, Ohio, including an AV shuttle routes in operation.
Technical Paper

Benchmarking Computational Time of Dynamic Programming for Autonomous Vehicle Powertrain Control

2020-04-14
2020-01-0968
Dynamic programming (DP) has been used for optimal control of hybrid powertrain and vehicle speed optimization particularly in design phase for over a couple of decades. With the advent of autonomous and connected vehicle technologies, automotive industry is getting closer to implementing predictive optimal control strategies in real time applications. The biggest challenge in implementation of optimal controls is the limitation on hardware which includes processor speed, IO speed, and random access memory. Due to the use of autonomous features, modern vehicles are equipped with better onboard computational resources. In this paper we present a comparison between multiple hardware options for dynamic programming. The optimal control problem considered, is the optimization of travel time and fuel economy by tuning the torque split ratio and vehicle speed while maintaining charge sustaining operation.
Technical Paper

Human-Driving Highway Overtake and Its Perceived Comfort: Correlational Study Using Data Fusion

2020-04-14
2020-01-1036
As an era of autonomous driving approaches, it is necessary to translate handling comfort - currently a responsibility of human drivers - to a vehicle imbedded algorithm. Therefore, it is imperative to understand the relationship between perceived driving comfort and human driving behaviour. This paper develops a methodology able to generate the information necessary to study how this relationship is expressed in highway overtakes. To achieve this goal, the approach revolved around the implementation of sensor Data Fusion, by processing data from CAN, camera and LIDAR from experimental tests. A myriad of variables was available, requiring individuating the key-information and parameters for recognition, classification and understanding of the manoeuvres. The paper presents the methodology and the role each sensor plays, by expanding on three main steps: Data segregation and parameter selection; Manoeuvre detection and processing; Manoeuvre classification and database generation.
Journal Article

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-04-16
2012-01-1008
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium-size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Journal Article

On the Contact Interfaces between the Driver and the Vehicle Seat

2013-04-08
2013-01-0455
In mathematical and mechanical modeling terms, automotive seating is characterized by boundary conditions at the nonlinear contact interfaces. These contact interfaces are subjected to vibro-impacts (slaps) and frictional slips. The slaps occur in contact interfaces at high amplitude vibrations, being characterized by very short duration, rapid dissipation of energy and large accelerations and decelerations. By considering friction in contact interface modeling, the simulation of the interaction between the driver and the vehicle seat becomes more realistic. Vibro-impacts and frictional slips can be simultaneously developed in a contact surface. The boundary conditions identification for a seat and a wide range of drivers' body types is performed using the concept of interference distance or penetration. The interference distance is introduced as an optimization problem. It is shown that the optimization problem provides robust solutions to minimum distance and interference problems.
Journal Article

Analysis of the Performance of a Turbocharged S.I. Engine under Transient Operating Conditions by Means of Fast Running Models

2013-04-08
2013-01-1115
The aim of this work is the assessment of the predictive capabilities of fast running models, obtained through an appropriate reduction and simplification process from detailed 1D fluid-dynamic models, for a turbocharged s.i. engine under highly transient operating conditions. Simulations results have been compared with experimental data for different types of models, ranging from fully detailed 1D fluid-dynamic models to map-based models, quantifying the degradation of the model accuracy and the reduction in the computational time for different kinds of driving cycles, from moderately transient such as the NEDC to highly dynamic such as the US06.
Technical Paper

Model-Based Design of a Hybrid Powertrain Architecture with Connected and Automated Technologies for Fuel Economy Improvements

2020-04-14
2020-01-1438
Simulation-based design of connected and automated hybrid-electric vehicles is a challenging problem. The design space is large, the systems are complex, and the influence of connected and autonomous technology on the process is a new area of research. The Ohio State University EcoCAR Mobility Challenge team developed a comprehensive design and simulation approach as a solution. This paper covers the detailed simulation work conducted after initial design space reduction was performed to arrive at a P0-P4 hybrid vehicle with a gasoline engine. Two simulation environments were deployed in this strategy, each with unique advantages. The first was Autonomie, which is a commercial software tool that is well-validated through peer-reviewed studies. This allowed the team to evaluate a wide range of components in a robust simulation framework.
Technical Paper

Performance Evaluation of the Pass-at-Green (PaG) Connected Vehicle V2I Application

2020-04-14
2020-01-1380
In recent years, the trend in the automotive industry has been favoring the reduction of fuel consumption in vehicles with the help of new and emerging technologies, such as Vehicle to Infrastructure (V2I), Vehicle to Vehicle (V2V) and Vehicle to Everything (V2X) communication and automated driving capability. As the world of transportation gets more and more connected through these technologies, the need to implement algorithms with V2I capability is amplified. In this paper, an algorithm called Pass at Green, utilizing V2I and vehicle longitudinal automation to modify the speed profile of a mid-size generic vehicle to decrease fuel consumption has been studied. Pass at Green (PaG) uses Signal Phase and Timing (SPaT) information acquired from upcoming traffic lights, which are the current phase of the upcoming traffic light and remaining time that the phase stays active.
Technical Paper

Experimental-Numerical Correlation of a Multi-Body Model for Comfort Analysis of a Heavy Truck

2020-04-14
2020-01-0768
In automotive market, today more than in the past, it is very important to reduce time to market and, mostly, developing costs before the final production start. Ideally, bench and on-road tests can be replaced by multi-body studies because virtual approach guarantees test conditions very close to reality and it is able to exactly replicate the standard procedures. Therefore, today, it is essential to create very reliable models, able to forecast the vehicle behavior on every road condition (including uneven surfaces). The aim of this study is to build an accurate multi-body model of a heavy-duty truck, check its handling performance, and correlate experimental and numerical data related to comfort tests for model tuning and validation purposes. Experimental results are recorded during tests carried out at different speeds and loading conditions on a Belgian blocks track. Simulation data are obtained reproducing the on-road test conditions in multi-body environment.
Technical Paper

Experimental Ride Comfort Analysis of an Electric Light Vehicle in Urban Scenario

2020-04-14
2020-01-1086
Urban mobility represents one of the most critical global challenges nowadays. Several options regarding design and power sources technologies were recently proposed; among which electric and hybrid vehicles are quite successful to meet the increasingly restrictive environmental targets. This significant goal may affect the perceived vehicle comfort and drivability, especially in everyday urban scenarios. The purpose of this paper is to carry out a comparison in terms of comfort between vehicles belonging to different categories, but all designed for urban mobility: an electric 2-passenger quadricycle used during the demonstration phase of the European project STEVE, an internal combustion engine 2-passenger car (Smart Fortwo), an electric 4-passenger car (Bolloré Bluecar) and an internal combustion engine 4-passenger car (Fiat 500). Leading European car-sharing services use the last three car models.
Journal Article

Design of a Parallel-Series PHEV for the EcoCAR 2 Competition

2012-09-10
2012-01-1762
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 75 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the rigorous design process followed by the Ohio State team during Year 1 of the competition. The design process includes identifying the team customer's needs and wants, selecting an overall vehicle architecture and completing detailed design work on the mechanical, electrical and control systems. This effort was made possible through support from the U.S.
X