Refine Your Search

Topic

Author

Search Results

Journal Article

Multi-Vehicle Evaluation of Gasoline Additive Packages: A Fourth Generation Protocol for the Assessment of Intake System Deposit Removal

2009-11-02
2009-01-2635
Building on two decades of expertise, a fourth generation fleet test protocol is presented for assessing the response of engine performance to gasoline additive treatment. In this case, the ability of additives to remove pre-existing deposit from the intake systems of port fuel injected vehicles has been examined. The protocol is capable of identifying real benefits under realistic market conditions, isolating fuel performance from other effects thereby allowing a direct comparison between different fuels. It is cost efficient and robust to unplanned incidents. The new protocol has been applied to the development of a candidate fuel additive package for the North American market. A vehicle fleet of 5 quadruplets (5 sets of 4 matched vehicles, each set of a different model) was tested twice, assessing the intake valve clean-up performance of 3 test fuels relative to a control fuel.
Journal Article

Heavy-Duty Vehicle Fuel Saving Technology Analysis to Support Phase 2 Regulations

2015-09-29
2015-01-2775
This paper presents the fuel consumption results of engine and vehicle simulation modeling for a wide variety of individual technologies and technology packages applied to a long haul heavy duty vehicle. Based on the simulation modeling, up to 11% in fuel savings is possible using commercially available and emerging technologies applied to a 15L DD15 engine alone. The predicted fuel savings are up to 17% in a Kenworth T700 tractor-trailer unit equipped with a range of vehicle technologies, but using the baseline DD15 diesel engine. A combination of the most aggressive engine and vehicle technologies can provide savings of up to 29%, averaged over a range of drive cycles. Over 30% fuel savings were found with the most aggressive combination on a simulated long haul duty cycle. Note that not all of these technologies may prove to be cost-effective. The fuel savings benefits for individual technologies vary widely depending on the drive cycles and payload.
Journal Article

Analysis Process for Truck Fuel Efficiency Study

2015-09-29
2015-01-2778
Medium- and Heavy Duty Truck fuel consumption and the resulting greenhouse gas (GHG) emissions are significant contributors to overall U.S. GHG emissions. Forecasts of medium- and heavy-duty vehicle activity and fuel use predict increased use of freight transport will result in greatly increased GHG emissions in the coming decades. As a result, the National Highway Traffic Administration (NHTSA) and the United States Environmental Protection Agency (EPA) finalized a regulation requiring reductions in medium and heavy truck fuel consumption and GHGs beginning in 2014. The agencies are now proposing new regulations that will extend into the next decade, requiring additional fuel consumption and GHG emissions reductions. To support the development of future regulations, a research project was sponsored by NHTSA to look at technologies that could be used for compliance with future regulations.
Journal Article

Medium-Duty Vehicle Fuel Saving Technology Analysis to Support Phase 2 Regulations

2015-09-29
2015-01-2769
This paper presents the results of engine and vehicle simulation modeling for a wide variety of individual technologies and technology packages applied to two medium-duty vocational vehicles. Simulation modeling was first conducted on one diesel and two gasoline medium-duty engines. Engine technologies were then applied to the baseline engines. The resulting fuel consumption maps were run over a range of vehicle duty cycles and payloads in the vehicle simulation model. Results were reported for both individual engine technologies and combinations or packages of technologies. Two vehicles, a Kenworth T270 box delivery truck and a Ford F-650 tow truck were evaluated. Once the baseline vehicle models were developed, vehicle technologies were added. As with the medium-duty engines, vehicle simulation results were reported for both individual technologies and for combinations. Vehicle technologies were evaluated only with the baseline 2019 diesel medium-duty engine.
Journal Article

Effects of Variable Speed Supercharging Using a Continuously Variable Planetary on Fuel Economy and Low Speed Torque

2012-09-10
2012-01-1737
This paper describes advances in variable speed supercharging, including benefits for both fuel economy and low speed torque improvement. This work is an extension of the work described in SAE Paper 2012-01-0704 [8]. Using test stand data and state-of-the-art vehicle simulation software, a NuVinci continuously variable planetary (CVP) transmission driving an Eaton R410 supercharger on a 2.2 liter diesel was compared to the same base engine/vehicle with a turbocharger to calculate vehicle fuel economy. The diesel engine was tuned for Tier 2 Bin 5 emissions. Results are presented using several standard drive cycles. A Ford Mustang equipped with a 4.6 liter SI engine and prototype variable speed supercharger has also been constructed and tested, showing low speed torque increases of up to 30%. Dynamometer test results from this effort are presented. The combined results illustrate the promise of variable speed supercharging as a viable option for the next generation of engines.
Technical Paper

Electromagnetic Compatibility in the Off-Highway Vehicle

1991-09-01
911791
The key words in the marketplace for off-highway vehicles are durability, performance, and efficiency. A manufacturer of these vehicles recognizes that one way to successfully address these needs is by a well thought through electronics design. With the computer sophistication now being incorporated into off-highway vehicles, engineers must work closely to assure electromagnetic compatibility (EMC) of the entire system. A properly established EMC program extending from concept to final design will support each of a product's specified operations and still function as an integrated whole. This paper describes the process for designing the EMC for an off-highway vehicle.
Technical Paper

The 1989 Formula SAE Student Design Competition

1990-02-01
900840
Forty-five cars were entered from 37 universities across the U.S. and Canada in the ninth annual Formula SAE Student Design Competition held on May 25, 26 and 27 at the University of Texas at San Antonio (UTSA). Thirty-six cars from 31 schools actually competed, but only 22 cars finished. The event included many firsts in Formula SAE. The SAE South Texas Section set a precedent by co-hosting the competition with the UTSA. The GM Sunraycer display and demonstration exhibited high technology and corporate support of Formula SAE. Total award funds (from various sponsors) exceeded those of previous events. New awards were given by new sponsors in 1989.
Technical Paper

Mild Regenerative Braking to Enhance Fuel Economy via Lowered Engine Load Due to Alternator

2008-10-12
2008-01-2560
Brake energy recovery is one of the key components in today's hybrid vehicles that allows for increased fuel economy. Typically, major engineering changes are required in the drivetrain to achieve these gains. The objective of this paper is to present a concept of capturing brake energy in a mild hybrid approach without any major modifications to the drivetrain or other vehicular systems. With fuel costs rising, the additional component cost incurred in the presented concept may be recovered quickly. In today's vehicles, alternators supply the electrical power for the engine and vehicle accessories whenever the engine is running. As vehicle electrical demands increase, this load is an ever-increasing part of the engine's output, negatively impacting fuel economy. By using a regenerative device (alternator) on the drive shaft (or any other part of the power train), electrical energy can be captured during braking.
Technical Paper

Design and Control Considerations for a Series Heavy Duty Hybrid Hydraulic Vehicle

2009-11-02
2009-01-2717
Hybrid hydraulic power trains are a natural fit for heavy duty vehicle applications due to their high power density. This paper describes the analytical formulae available for sizing a series hybrid hydraulic vehicle without changing the engine size. Sizing of pump, accumulator and motor are addressed specifically. A control strategy is also suggested for operating the engine and powertrain pressure close to the best efficiency zones. An example is then given using an FMTV (Family of Medium Tactical Vehicles) platform with a CAT C7 engine. Simulation results are generated using VPSET (Vehicle Propulsion Systems Evaluation Tool), an SwRI-developed vehicle modeling and simulation tool. The hydraulic components are sized according to the recommendations in this paper. The suggested control strategy is implemented in VPSET and performance of the series hydraulic hybrid configuration is compared with that of a conventional powertrain.
Technical Paper

Paint Integrity and Corrosion Sensor

2002-03-04
2002-01-0205
Atmospheric corrosion of steels, aluminum alloys, and Al-clad aluminum alloys is a problem for many civil engineering structures, commercial and military vehicles, and aircraft. Paint is usually the primary means to prevent the corrosion of steel bridge components, automobiles, trucks, and aircraft. Under ideal conditions, the coating provides a continuous layer that is impervious to moisture. At present, maintenance cycles for commercial and military aircraft and ground vehicles, as well as engineered structures, is based on experience and appearance rather than a quantitative determination of coating integrity. To improve the maintenance process and reduce costs, sensors are often used to monitor corrosion. The present suite of sensors designed to detect corrosion and marketed to predict the lifetime of the engineered components, however, are not useful for determining the condition of the protective paint coatings.
Technical Paper

Downspeeding and Supercharging a Diesel Passenger Car for Increased Fuel Economy

2012-04-16
2012-01-0704
The effects of downspeeding and supercharging a passenger car diesel engine were studied through laboratory investigation and vehicle simulation. Changes in the engine operating range, transmission gearing, and shift schedule resulted in improved fuel consumption relative to the baseline turbocharged vehicle while maintaining performance and drivability metrics. A shift schedule optimization technique resulted in fuel economy gains of up to 12% along with a corresponding reduction in transmission shift frequency of up to 55% relative to the baseline turbocharged configuration. First gear acceleration, top gear passing, and 0-60 mph acceleration of the baseline turbocharged vehicle were retained for the downsped supercharged configuration.
Technical Paper

Scuderi Split Cycle Engine: Air Hybrid Vehicle Powertrain Simulation Study

2012-04-16
2012-01-1013
The Scuderi engine is a split cycle design that divides the four strokes of a conventional combustion cycle over two paired cylinders, one intake/compression cylinder and one power/exhaust cylinder, connected by a crossover port. This configuration provides potential benefits to the combustion process, as well as presenting some challenges; it also creates the possibility for pneumatic hybridization of the engine. This paper presents the methodology and results of a comprehensive study to investigate the benefits of air hybrid operation with the Scuderi Split Cycle (SSC) engine. Four air hybrid operating modes are made possible by the Split Cycle configuration, namely air compressor, air expander, air expander & firing and firing & charging. The predicted operating requirements for each individual operating mode are established. The air and fuel flow of the individual modes are fully mapped throughout the engine operating speed and load range and air tank pressure operating range.
Technical Paper

A Next-Generation Emission Test Procedure for Small Utility Engines - Part 1, Background and Approach

1990-09-01
901595
Measurement of emissions from small utility engines has usually been accomplished using steady-state raw emissions procedures such as SAE Recommended Practice J1088. While raw exhaust measurements have the advantage of producing modal exhaust gas concentration data for design feedback; they are laborious, may influence both engine performance and the emissions themselves, and have no provision for concurrent particulate measurements. It is time to consider a full-dilution procedure similar in principle to automotive and heavy-duty on-highway emission measurement practice, leading to improvements in many of the areas noted above, and generally to much higher confidence in data obtained. When certification and audit of small engine emissions become a reality, a brief dilute exhaust procedure generating only the necessary data will be a tremendous advantage to both manufacturers and regulatory agencies.
Technical Paper

Design of an Emergency Tire Inflation System for Long Haul Trucks

1995-11-01
952592
An Emergency Tire Inflation System (ETIS) designed for use on commercial trucks was evaluated and tested. The ETIS is provided in kit form and designed to be installed by a truck operator to provide emergency air to inflate a low or punctured tire on tractor drive axles. The ETIS will continue to supply air to the tire until the system pressure falls below a safe air pressure level. The system is designed to allow the rig to be driven 500 miles to a tire repair station or to a safe location where tire repair service is available. The installation kit (Figure 1), which can fit under a truck seat, includes all the necessary equipment to install the system on the most common drive axles. The ETIS supplies air to the under-inflated tire through a previously qualified1 Rotary Union design. The Rotary Union is attached to the axle flange of the drive axle by a threaded adapter and two adjustable links that allow the Rotary Union to be placed at the center of rotation of the axle.
Technical Paper

Proposed Efficiency Rating for an Optimized Automatic Transmission

1996-02-01
960425
Increased concern for improving fuel mileage in today's vehicles has focused attention on powertrain component efficiencies. Currently, no efficiency standards exist for automatic transmissions but, uniform testing procedures do exist. Consequently, vehicle and transmission manufacturers have no basis for comparing transmission-to-transmission performance. In addition, manufacturers have no design targets from which to critique their product. This paper addresses this issue by developing an overall transmission efficiency rating. This rating is based upon average transmission operational torques and speeds, the percent time of operation in each gear for a representative duty cycle, and representative efficiencies at these conditions based on test data obtained from a cross section of current production transmissions.
Technical Paper

A Performance Comparison of Various Automatic Transmission Pumping Systems

1996-02-01
960424
The pumping system used in a step ratio automatic transmission can consume up to 20% of the total power required to operate a typical automotive transmission through the EPA city cycle. As such, it represents an area manufacturers have focused their efforts towards in their quest to obtain improved transmission efficiency. This paper will discuss the history of automatic transmission pumps that develop up to 300 psi along with a description of the factors used to size pumps and establish pump flow requirements. The various types of pumps used in current automatic transmissions will be described with a discussion of their characteristics including a comparison based upon observations of their performance. Specific attention will be focused on comparing the volumetric efficiency, mechanical efficiency, overall efficiency, pumping torque and discharge flow.
Technical Paper

Three-Point Belt Induced Injuries: A Comparison Between Laboratory Surrogates and Real World Accident Victims

1975-02-01
751141
Injuries produced by standard three point restraint systems with retractors will be compared between cadavers in laboratory simulated collisions at 30 mph barrier equivalent speed and lap and shoulder belted front seat occupants in real world frontal collisions of '73-'75 full sized cars. Tests conducted at SwRI with belted, unembalmed, fresh cadavers have resulted in extremely severe thoracic and cervical injuries, including multiple rib fractures, fractures of the sternum, clavicle and cervical vertebrae. On the other hand, injury data from a national accident investigation study to evaluate the effectiveness of restraints in late model passenger cars indicates that such injuries in real world crashes of equivalent severity are not always observed. The reasons possible for these differences are discussed. Both programs at SwRI are funded by the National Highway Traffic Safety Administration.
Technical Paper

A Critical Analysis of Traffic Accident Data

1975-02-01
750916
General agreement exists that the ultimate goals of traffic accident research are to reduce fatality, mitigate injury and decrease economic loss to society. Although massive quantities of data have been collected in local, national and international programs, attempts by analysts to use these data to explore ideas or support hypotheses have been met by a variety of problems. Specifically, the coded variables in the different files are not consistent and little information on accident etiology is collected. Examples of the inadequacies of present data in terms of the collected and coded variables are shown. The vehicular, environmental and human (consisting of human factors and injury factors) variables are disproportionately represented in most existing data files in terms of recognized statistical evidence of accident causation. A systems approach is needed to identify critical, currently neglected variables and develop units of measurement and data collection procedures.
Technical Paper

Responses of Animals Exposed to Deployment of Various Passenger Inflatable Restraint System Concepts for a Variety of Collision Severities and Animal Positions

1982-01-01
826047
This paper summarizes the results of tests conducted with anesthetized animals that were exposed to a wide range of passenger inflatable restraint cushion forces for a variety of impact sled - simulated accident conditions. The test configurations and inflatable restraint system concepts were selected to produce a broad spectrum of injury types and severities to the major organs of the head, neck and torso of the animals. These data were needed to interpret the significance of the responses of an instrumented child dummy that was being used to evaluate child injury potential of the passenger inflatable restraint system being developed by General Motors Corporation. Injuries ranging from no injury to fatal were observed for the head, neck and abdomen regions. Thoracic injuries ranged from no injury to critical, survival uncertain.
Technical Paper

Experimental Study of Wet-Brake Friction

1985-09-01
851575
An experimental program was designed to determine friction characteristics between brake pads and metal rotors that could indicate a brake fluid's propensity to cause chatter in wet-brakes. Friction was measured on a bench version of the John Deere wet-brake qualification system. Rotor and pad supports were made very rigid to avoid chatter in the simulator. One type of pad was run on cast-iron and mild steel rotors using two reference oils, one giving unacceptable levels of chatter and the other giving acceptable levels as previously determined in full-scale tests on the Deere system. The outstanding discriminating characteristic was the drop in friction from breakaway of the pad from the rotor. The ratio of the initial drop in the friction coefficient between unacceptable and acceptable oils for all conditions of the testing ranged from 1.7 to 2.0
X