Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Multi-Vehicle Evaluation of Gasoline Additive Packages: A Fourth Generation Protocol for the Assessment of Intake System Deposit Removal

2009-11-02
2009-01-2635
Building on two decades of expertise, a fourth generation fleet test protocol is presented for assessing the response of engine performance to gasoline additive treatment. In this case, the ability of additives to remove pre-existing deposit from the intake systems of port fuel injected vehicles has been examined. The protocol is capable of identifying real benefits under realistic market conditions, isolating fuel performance from other effects thereby allowing a direct comparison between different fuels. It is cost efficient and robust to unplanned incidents. The new protocol has been applied to the development of a candidate fuel additive package for the North American market. A vehicle fleet of 5 quadruplets (5 sets of 4 matched vehicles, each set of a different model) was tested twice, assessing the intake valve clean-up performance of 3 test fuels relative to a control fuel.
Journal Article

Feasibility of Using Full Synthetic Low Viscosity Engine Oil at High Ambient Temperatures in Military Vehicles

2010-10-25
2010-01-2176
The US Army is currently assessing the feasibility and defining the requirements of a Single Common Powertrain Lubricant (SCPL). This new lubricant would consist of an all-season (arctic to desert), fuel-efficient, multifunctional powertrain fluid with extended drain capabilities. As a developmental starting point, diesel engine testing has been conducted using the current MIL-PRF-46167D arctic engine oil at high temperature conditions representative of desert operation. Testing has been completed using three high density military engines: the General Engine Products 6.5L(T) engine, the Caterpillar C7, and the Detroit Diesel Series 60. Tests were conducted following two standard military testing cycles; the 210 hr Tactical Wheeled Vehicle Cycle, and the 400 hr NATO Hardware Endurance Cycle. Modifications were made to both testing procedures to more closely replicate the operation of the engine in desert-like conditions.
Journal Article

Heavy-Duty Vehicle Fuel Saving Technology Analysis to Support Phase 2 Regulations

2015-09-29
2015-01-2775
This paper presents the fuel consumption results of engine and vehicle simulation modeling for a wide variety of individual technologies and technology packages applied to a long haul heavy duty vehicle. Based on the simulation modeling, up to 11% in fuel savings is possible using commercially available and emerging technologies applied to a 15L DD15 engine alone. The predicted fuel savings are up to 17% in a Kenworth T700 tractor-trailer unit equipped with a range of vehicle technologies, but using the baseline DD15 diesel engine. A combination of the most aggressive engine and vehicle technologies can provide savings of up to 29%, averaged over a range of drive cycles. Over 30% fuel savings were found with the most aggressive combination on a simulated long haul duty cycle. Note that not all of these technologies may prove to be cost-effective. The fuel savings benefits for individual technologies vary widely depending on the drive cycles and payload.
Journal Article

Analysis Process for Truck Fuel Efficiency Study

2015-09-29
2015-01-2778
Medium- and Heavy Duty Truck fuel consumption and the resulting greenhouse gas (GHG) emissions are significant contributors to overall U.S. GHG emissions. Forecasts of medium- and heavy-duty vehicle activity and fuel use predict increased use of freight transport will result in greatly increased GHG emissions in the coming decades. As a result, the National Highway Traffic Administration (NHTSA) and the United States Environmental Protection Agency (EPA) finalized a regulation requiring reductions in medium and heavy truck fuel consumption and GHGs beginning in 2014. The agencies are now proposing new regulations that will extend into the next decade, requiring additional fuel consumption and GHG emissions reductions. To support the development of future regulations, a research project was sponsored by NHTSA to look at technologies that could be used for compliance with future regulations.
Journal Article

Medium-Duty Vehicle Fuel Saving Technology Analysis to Support Phase 2 Regulations

2015-09-29
2015-01-2769
This paper presents the results of engine and vehicle simulation modeling for a wide variety of individual technologies and technology packages applied to two medium-duty vocational vehicles. Simulation modeling was first conducted on one diesel and two gasoline medium-duty engines. Engine technologies were then applied to the baseline engines. The resulting fuel consumption maps were run over a range of vehicle duty cycles and payloads in the vehicle simulation model. Results were reported for both individual engine technologies and combinations or packages of technologies. Two vehicles, a Kenworth T270 box delivery truck and a Ford F-650 tow truck were evaluated. Once the baseline vehicle models were developed, vehicle technologies were added. As with the medium-duty engines, vehicle simulation results were reported for both individual technologies and for combinations. Vehicle technologies were evaluated only with the baseline 2019 diesel medium-duty engine.
Journal Article

Engine Operating Condition and Gasoline Fuel Composition Effects on Low-Speed Pre-Ignition in High-Performance Spark Ignited Gasoline Engines

2011-04-12
2011-01-0342
Downsizing is an important concept to reduce fuel consumption as well as emissions of spark ignition engines. Engine displacement is reduced in order to shift operating points from lower part load into regions of the operating map with higher efficiency and thus lower specific fuel consumption [ 1 ]. Since maximum power in full load operation decreases due to the reduction of displacement, engines are boosted (turbocharging or supercharging), which leads to a higher specific loading of the engines. Hence, a new combustion phenomenon has been observed at high loads and low engine speed and is referred to as Low-Speed Pre-Ignition or LSPI. In cycles with LSPI, the air/fuel mixture is ignited prior to the spark which results in the initial flame propagation quickly transforming into heavy engine knock. Very high pressure rise rates and peak cylinder pressures could exceed design pressure limits, which in turn could lead to degradation of the engine.
Journal Article

The Effects of Piston Crevices and Injection Strategy on Low-Speed Pre-Ignition in Boosted SI Engines

2012-04-16
2012-01-1148
The spark ignition (SI) engine has been known to exhibit several different abnormal combustion phenomena, such as knock or pre-ignition, which have been addressed with improved engine design or control schemes. However, in highly boosted SI engines, Low-Speed Pre-Ignition (LSPI), a pre-ignition event typically followed by heavy knock, has developed into a topic of major interest due to its potential for engine damage. Previous experiments associated increases in hydrocarbon emissions with the blowdown event of an LSPI cycle [1]. Also, the same experiments showed that there was a dependency of the LSPI activity on fuel and/or lubricant compositions [1]. Based on these findings it was hypothesized that accumulated hydrocarbons play a role in LSPI and are consumed during LSPI events. A potential source for accumulated HC is the top land piston crevice.
Journal Article

Effects of Variable Speed Supercharging Using a Continuously Variable Planetary on Fuel Economy and Low Speed Torque

2012-09-10
2012-01-1737
This paper describes advances in variable speed supercharging, including benefits for both fuel economy and low speed torque improvement. This work is an extension of the work described in SAE Paper 2012-01-0704 [8]. Using test stand data and state-of-the-art vehicle simulation software, a NuVinci continuously variable planetary (CVP) transmission driving an Eaton R410 supercharger on a 2.2 liter diesel was compared to the same base engine/vehicle with a turbocharger to calculate vehicle fuel economy. The diesel engine was tuned for Tier 2 Bin 5 emissions. Results are presented using several standard drive cycles. A Ford Mustang equipped with a 4.6 liter SI engine and prototype variable speed supercharger has also been constructed and tested, showing low speed torque increases of up to 30%. Dynamometer test results from this effort are presented. The combined results illustrate the promise of variable speed supercharging as a viable option for the next generation of engines.
Technical Paper

Electromagnetic Compatibility in the Off-Highway Vehicle

1991-09-01
911791
The key words in the marketplace for off-highway vehicles are durability, performance, and efficiency. A manufacturer of these vehicles recognizes that one way to successfully address these needs is by a well thought through electronics design. With the computer sophistication now being incorporated into off-highway vehicles, engineers must work closely to assure electromagnetic compatibility (EMC) of the entire system. A properly established EMC program extending from concept to final design will support each of a product's specified operations and still function as an integrated whole. This paper describes the process for designing the EMC for an off-highway vehicle.
Journal Article

Lubricant Reactivity Effects on Gasoline Spark Ignition Engine Knock

2012-04-16
2012-01-1140
The performance and efficiency of spark ignited gasoline engines is often limited by end-gas knock. In particular, when operating the engine at high loads, combustion phasing is retarded to prevent knock, resulting in a significant reduction of engine efficiency. Since the invention of the spark ignition (SI) engine, much work has been devoted to improve and regulate fuel characteristics, such as octane number, to suppress engine knock. The auto-ignition tendency of the engine lubricant however, as described by cetane number (CN), has received little attention, as it has been assumed that engine lubricant effects on knock are insignificant, primarily due to low levels of average oil consumption. However, with modern SI engines being developed to operate at higher loads and closer to knock limits, the reactivity of engine lubricants can impact the knock behavior.
Journal Article

Engine Oil Fuel Economy Testing - A Tale of Two Tests

2017-03-28
2017-01-0882
Fuel economy is not an absolute attribute, but is highly dependent on the method used to evaluate it. In this work, two test methods are used to evaluate the differences in fuel economy brought about by changes in engine oil viscosity grade and additive chemistry. The two test methods include a chassis dynamometer vehicle test and an engine dynamometer test. The vehicle testing was conducted using the Federal Test Procedure (FTP) testing protocol while the engine dynamometer test uses the proposed American Society for Testing and Materials (ASTM) Sequence VIE fuel economy improvement 1 (FEI1) testing methodology. In an effort to improve agreement between the two testing methods, the same model engine was used in both test methods, the General Motors (GM) 3.6 L V6 (used in the 2012 model year Chevrolet™ Malibu™ engine). Within the lubricant industry, this choice of engine is reinforced because it has been selected for use in the proposed Sequence VIE fuel economy test.
Technical Paper

A Study of Engine Sensitivity to Spark Plug Rim-Fire

1998-05-04
981453
A recent study of engine sensitivity revealed that spark plugs used in conventional spark-ignited gasoline-fueled engines do not always fire in the intended fashion. Rather than firing to the ground strap during each ignition event, the arc frequently travels to the “rim” or “shell” of the spark plug. This behavior is termed rim-fire and although observed by other researchers in industry, its effects on engine performance are not widely reported. This paper addresses some of the quantitative effects of rim-fire on engine performance. Combustion data were recorded for various repeat conditions on a Ford 1.8L Zetec engine. The first set of engine tests used four, new, conventional, automotive spark plugs. The second set of engine tests used four modified spark plugs that induced 100% rim-fire when the ground strap was permanently removed. The study focused on part- and full-load engine performance, EGR tolerance, and step-transient characteristics.
Technical Paper

The 1989 Formula SAE Student Design Competition

1990-02-01
900840
Forty-five cars were entered from 37 universities across the U.S. and Canada in the ninth annual Formula SAE Student Design Competition held on May 25, 26 and 27 at the University of Texas at San Antonio (UTSA). Thirty-six cars from 31 schools actually competed, but only 22 cars finished. The event included many firsts in Formula SAE. The SAE South Texas Section set a precedent by co-hosting the competition with the UTSA. The GM Sunraycer display and demonstration exhibited high technology and corporate support of Formula SAE. Total award funds (from various sponsors) exceeded those of previous events. New awards were given by new sponsors in 1989.
Technical Paper

Development and Testing of Optimized Engine Oils for Modern Two-Stroke Cycle Direct Fuel Injected Outboard Engines

2006-11-13
2006-32-0018
Despite the recent increase in fuel prices, the multi-billion dollar recreational boating market in North America continues to experience solid momentum and growth. In the U.S. economy alone, sales of recreational boats continue to increase with over 17 million boats sold in 2004 [1]. Of that share, outboard boats and the engines that power them, accounted for nearly half of all boat sales. Though there has been a shift in outboard technology to four-stroke cycle engines, a significant number of new engine sales represent two-stroke cycle engines employing direct fuel injection as a means to meet emissions regulations. With the life span of modern outboards estimated to be 8 to 10 years, a significant base of two-stroke cycle engines exist in the market place, and will continue to do so for the foreseeable future.
Technical Paper

Sampling System for Solid and Volatile Exhaust Particle Size, Number, and Mass Emissions

2007-04-16
2007-01-0307
A solid particle sampling system (SPSS) that is equipped with a heated oxidation catalyst, micro-dilution tunnels, filter holders and sampling probes, was designed and developed to collect filter-based solid and total (solid plus volatile) particles from the exhaust of internal combustion engines, and to facilitate the measurement of solid and total particles when equipped with particle measuring instruments for size, number, mass, and other particle characteristics. The SPSS was characterized with laboratory aerosol and showed a very low solid particle loss of less than 5 percent using sodium chloride particles, very high volatile particle removal of better than 98 percent using oil droplets, and no formation of sulfuric acid particles when using ammonium sulfate particles. The SPSS is a useful tool for researchers interested in characterizing the solid and volatile fraction of particles emitted from combustion sources.
Technical Paper

Mild Regenerative Braking to Enhance Fuel Economy via Lowered Engine Load Due to Alternator

2008-10-12
2008-01-2560
Brake energy recovery is one of the key components in today's hybrid vehicles that allows for increased fuel economy. Typically, major engineering changes are required in the drivetrain to achieve these gains. The objective of this paper is to present a concept of capturing brake energy in a mild hybrid approach without any major modifications to the drivetrain or other vehicular systems. With fuel costs rising, the additional component cost incurred in the presented concept may be recovered quickly. In today's vehicles, alternators supply the electrical power for the engine and vehicle accessories whenever the engine is running. As vehicle electrical demands increase, this load is an ever-increasing part of the engine's output, negatively impacting fuel economy. By using a regenerative device (alternator) on the drive shaft (or any other part of the power train), electrical energy can be captured during braking.
Technical Paper

Design and Control Considerations for a Series Heavy Duty Hybrid Hydraulic Vehicle

2009-11-02
2009-01-2717
Hybrid hydraulic power trains are a natural fit for heavy duty vehicle applications due to their high power density. This paper describes the analytical formulae available for sizing a series hybrid hydraulic vehicle without changing the engine size. Sizing of pump, accumulator and motor are addressed specifically. A control strategy is also suggested for operating the engine and powertrain pressure close to the best efficiency zones. An example is then given using an FMTV (Family of Medium Tactical Vehicles) platform with a CAT C7 engine. Simulation results are generated using VPSET (Vehicle Propulsion Systems Evaluation Tool), an SwRI-developed vehicle modeling and simulation tool. The hydraulic components are sized according to the recommendations in this paper. The suggested control strategy is implemented in VPSET and performance of the series hydraulic hybrid configuration is compared with that of a conventional powertrain.
Technical Paper

Fuel Efficiency Effects of Lubricants in Military Vehicles

2010-10-25
2010-01-2180
The US Army is currently seeking to reduce fuel consumption by utilizing fuel efficient lubricants in its ground vehicle fleet. An additional desire is for a lubricant which would consist of an all-season (arctic to desert), fuel efficient, multifunctional Single Common Powertrain Lubricant (SCPL) with extended drain capabilities. To quantify the fuel efficiency impact of a SCPL type fluid in the engine and transmission, current MIL-PRF-46167D arctic engine oil was used in place of MIL-PRF-2104G 15W-40 oil and SAE J1321 Fuel Consumption In-Service testing was conducted. Additionally, synthetic SAE 75W-140 gear oil was evaluated in the axles of the vehicles in place of an SAE J2360 80W-90 oil. The test vehicles used for the study were three M1083A1 5-Ton Cargo vehicles from the Family of Medium Tactical Vehicles (FMTV).
Technical Paper

Predicting Sequence VI, VIA, and VIB Engine Tests Using Laboratory Methods

2001-05-07
2001-01-1904
Engine tests are widely used to measure the ability of lubricating oils to reduce fuel consumption through improved mechanical efficiency. Previous publications have correlated laboratory-scale tests with the well-established Sequence VI and VIA engine methods. The present paper uses a matrix of 66 oils to produce an empirical model for the recently developed Sequence VIB engine test. A smaller matrix of oils was available for correlation with Sequence VI and VIA results. The models combine a purposely-designed friction test with conventional measures of kinematic and high-temperature high-shear viscosity. Good correlation was obtained with the Sequence VI, VIA and VIB results, as well as each of the five stages in the Sequence VIB test. The effects of lubricant oxidation in the 96-hour FEI-2 portion of the Sequence VIB test were similar for each of the oils. As a result, good correlation was observed between FEI-1 and FEI-2 results from the VIB test.
Technical Paper

Impact of Lubricant Oil on Regulated Emissions of a Light-Duty Mercedes-Benz OM611 CIDI-Engine

2001-05-07
2001-01-1901
The Partnership for a New Generation Vehicle (PNGV) has identified the compression-ignition, direct-injection (CIDI) engine as a promising technology in meeting the PNGV goal of 80 miles per gallon for a prototype mid-size sedan by 2004. Challenges remain in reducing the emission levels of the CIDI-engine to meet future emission standards. The objective of this project was to perform an initial screening of crank case lubricant contribution to regulated engine-out emissions, particularly when low particulate forming diesel fuel formulations are used. The test engine was the Mercedes-Benz OM611, the test oils were a mineral SAE 5W30, a synthetic (PAO based) SAE 5W30, and a synthetic (PAO based) SAE 15W50, and the test fuels were a California-like certification fuel and an alternative oxygenated diesel fuel.
X