Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Evaluation of a NOx Transient Response Method for OBD of SCR Catalysts

2012-01-30
OBD requirements for aftertreatment system components require monitoring of the individual system components. One such component can be an NH3-SCR catalyst for NOx reduction. An OBD method that has been suggested is to generate positive or negative spikes in the inlet NH3 concentration, and monitor the outlet NOx transient response. A slow response indicates that the catalyst is maintaining its NH3 storage capacity, and therefore it is probably not degraded. A fast response indicates the catalyst has lost NH3 storage capacity, and may be degraded. The purpose of the work performed at Southwest Research Institute was to assess this approach for feasibility, effectiveness and practicality. The presentation will describe the work performed, results obtained, and implications for applying this method in test laboratory and real-world situations. Presenter Gordon J. Bartley, Southwest Research Institute
Video

SCR Deactivation Study for OBD Applications

2012-06-18
Selective catalytic reduction (SCR) catalysts will be used to reduce oxides of nitrogen (NOx) emissions from internal combustion engines in a number of applications [1,2,3,4]. Southwest Research Institute® (SwRI)® performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and an Fe-zeolite formulation. This work describes NOx timed response to ammonia (NH3) transients as a function of thermal aging time and temperature. It has been proposed that the response time of NOx emissions to NH3 transients, effected by changes in diesel emissions fluid (DEF) injection rate, could be used as an on-board diagnostic (OBD) metric. The objective of this study was to evaluate the feasibility and practicality of this OBD approach.
Journal Article

Performance and Emissions of Diesel and Alternative Diesel Fuels in a Heavy-duty Industry-Standard Older Engine

2010-10-25
2010-01-2281
Conventional diesel fuel has been in the market for decades and used successfully to run diesel engines of all sizes in many applications. In order to reduce emissions and to foster energy source diversity, new fuels such as alternative and renewable, as well as new fuel formulations have entered the market. These include biodiesel, gas-to-liquid, and alternative formulations by states such as California. Performance variations in fuel economy, emissions, and compatibility for these fuels have been evaluated and debated. In some cases contradictory views have surfaced. “Sustainable”, “Renewable”, and “Clean” designations have been interchanged. Adding to the confusion, results from one fuel in one type of engine such as an older heavy-duty engine, is at times compared to that of another type such as a modern light-duty. This study was an attempt to compare the performance of several fuels in an identical environment, using the same engine, for direct comparison.
Journal Article

1000-Hour Durability Evaluation of a Prototype 2007 Diesel Engine with Aftertreatment Using B20 Biodiesel Fuel

2009-11-02
2009-01-2803
A prototype 2007 ISL Cummins diesel engine equipped with a diesel oxidation catalyst (DOC), diesel particle filter (DPF), variable geometry turbocharger (VGT), and cooled exhaust gas recirculation (EGR) was tested at Southwest Research Institute (SwRI) under a high-load accelerated durability cycle for 1000 hours with B20 soy-based biodiesel blends and ultra-low sulfur diesel (ULSD) fuel to determine the impact of B20 on engine durability, performance, emissions, and fuel consumption. At the completion of the 1000-hour test, a thorough engine teardown evaluation of the overhead, power transfer, cylinder, cooling, lube, air handling, gaskets, aftertreatment, and fuel system parts was performed. The engine operated successfully with no biodiesel-related failures. Results indicate that engine performance was essentially the same when tested at 125 and 1000 hours of accumulated durability operation.
Technical Paper

Development of a Novel Dynamically Loaded Journal Bearing Test Rig

2021-09-21
2021-01-1218
In this work, a dynamically loaded hydrodynamic journal bearing test rig is developed and introduced. The rig is a novel design, using a hydraulic actuator with fast acting spool valves to apply load to a connecting rod. This force is transmitted through the connecting rod to the large end bearing which is mounted on a spinning shaft. The hydraulic actuator allows for fully variable control and can be used to apply either static load in compression or tension, or dynamic loading to simulate engine operation. A variable speed electric motor controls shaft speed and is synchronized to the hydraulic actuator to accurately simulate loading to represent all four engine strokes. A high precision torque meter enables direct measurements of friction torque, while shaft position is measured via a high precision encoder.
Technical Paper

Combination of Mixed Metal Oxides with Cu-Zeolite for Enhanced Soot Oxidation on an SCRoF

2021-09-05
2021-24-0071
A push for more stringent emissions regulations has resulted in larger, increasingly complex aftertreatment solutions. In particular, oxides of nitrogen (NOX) and particulate matter (PM) have been controlled using two separate systems, selective catalytic reduction (SCR) and the catalyze diesel particulate filter (CDPF), or the functionality has been combined into a single device producing the SCR on filter (SCRoF). The SCRoF forgoes beneficial NO2 production present in the CDPF to avoid NH3 oxidation which occurs when using platinum group metals (PGM) for oxidation. In this study, mixed-metal oxides are shown to oxidize NO to NO2 without appreciable NH3 oxidation. This selectivity leads to enhanced performance when combined with a typical Cu-zeolite catalyst.
Technical Paper

Electronic Control of Brake and Accelerator Pedals for Precise Efficiency Testing of Electrified Vehicles

2020-04-14
2020-01-1282
Efficiency testing of hybrid-electric vehicles is challenging, because small run-to-run differences in pedal application can change when the engine fires or the when the friction brakes supplement regenerative braking, dramatically affecting fuel use or energy regeneration. Electronic accelerator control has existed for years, thanks to the popularity of throttle-by-wire (TBW). Electronic braking control is less mature, since most vehicles don’t use brake-by-wire (BBW). Computer braking control on a chassis dynamometer typically uses a mechanical actuator (which may suffer backlash or misalignment) or braking the dynamometer rather than the vehicle (which doesn’t yield regeneration). The growth of electrification and autonomy provides the means to implement electronic brake control. Electrified vehicles use BBW to control the split between friction and regenerative braking. Automated features, e.g. adaptive cruise control, require BBW to actuate the brakes without pedal input.
Journal Article

The Interaction between Fuel Anti-Knock Index and Reformation Ratio in an Engine Equipped with Dedicated EGR

2016-04-05
2016-01-0712
Experiments were performed on a small displacement (< 2 L), high compression ratio, 4 cylinder, port injected gasoline engine equipped with Dedicated EGR® (D-EGR®) technology using fuels with varying anti-knock properties. Gasolines with anti-knock indices of 84, 89 and 93 anti-knock index (AKI) were tested. The engine was operated at a constant nominal EGR rate of ∼25% while varying the reformation ratio in the dedicated cylinder from a ϕD-EGR = 1.0 - 1.4. Testing was conducted at selected engine speeds and constant torque while operating at knock limited spark advance on the three fuels. The change in combustion phasing as a function of the level of overfuelling in the dedicated cylinder was documented for all three fuels to determine the tradeoff between the reformation ratio required to achieve a certain knock resistance and the fuel octane rating.
Technical Paper

Evaluation of an On-Board, Real-Time Electronic Particulate Matter Sensor Using Heavy-Duty On-Highway Diesel Engine Platform

2020-04-14
2020-01-0385
California Air Resources Board (CARB) has instituted requirements for on-board diagnostics (OBD) that makes a spark-plug sized exhaust particulate matter (PM) sensor a critical component of the OBD system to detect diesel particulate filter (DPF) failure. Currently, non-real-time resistive-type sensors are used by engine OEMs onboard vehicles. Future OBD regulations are likely to lower PM OBD thresholds requiring higher sensitivity sensors with better data yield for OBD decision making. The focus of this work was on the experimental evaluation of a real-time PM sensor manufactured by EmiSense Technologies, LLC that may offer such benefits. A 2011 model year on-highway heavy-duty diesel engine fitted with a diesel oxidation catalyst (DOC) and a catalyzed DPF followed by urea-based selective catalytic reducer (SCR) and ammonia oxidation (AMOX) catalysts was used for this program.
Journal Article

Ethanol Flex-fuel Engine Improvements with Exhaust Gas Recirculation and Hydrogen Enrichment

2009-04-20
2009-01-0140
An investigation was performed to identify the benefits of cooled exhaust gas recirculation (EGR) when applied to a potential ethanol flexible fuelled vehicle (eFFV) engine. The fuels investigated in this study represented the range a flex-fuel engine may be exposed to in the United States; from 85% ethanol/gasoline blend (E85) to regular gasoline. The test engine was a 2.0-L in-line 4 cylinder that was turbocharged and port fuel injected (PFI). Ethanol blended fuels, including E85, have a higher octane rating and produce lower exhaust temperatures compared to gasoline. EGR has also been shown to decrease engine knock tendency and decrease exhaust temperatures. A natural progression was to take advantage of the superior combustion characteristics of E85 (i.e. increase compression ratio), and then employ EGR to maintain performance with gasoline. When EGR alone could not provide the necessary knock margin, hydrogen (H2) was added to simulate an onboard fuel reformer.
Journal Article

Smooth In-Cylinder Lean-Rich Combustion Switching Control for Diesel Engine Exhaust-Treatment System Regenerations

2008-04-14
2008-01-0979
This paper describes an in-cylinder lean-rich combustion (no-post-injection for rich) switching control approach for modern diesel engines equipped with exhaust-treatment systems. No-post-injection rich combustion is desirable for regeneration of engine exhaust-treatment systems thanks to its less fuel penalty compared with regeneration approaches using post-injections and / or in-exhaust injections. However, for vehicle applications, it is desirable to have driver-transparent exhaust-treatment system regenerations, which challenge the in-cylinder rich-lean combustion transitions. In this paper, a nonlinear in-cylinder condition control system combined with in-cylinder condition guided fueling control functions were developed to achieve smooth in-cylinder lean-rich switching control at both steady-state and transient operation. The performance of the control system is evaluated on a modern light-duty diesel engine (G9T600).
Journal Article

Determination of the PEMS Measurement Allowance for PM Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program

2012-04-16
2012-01-1250
This paper summarizes the Heavy-Duty In-Use Testing (HDUIT) measurement allowance program for Particulate Matter Portable Emissions Measurement Systems (PM-PEMS). The measurement allowance program was designed to determine the incremental error between PM measurements using the laboratory constant volume sampler (CVS) filter method and in-use testing with a PEMS. Two independent PM-PEMS that included the Sensors Portable Particulate Measuring Device (PPMD) and the Horiba Transient Particulate Matter (TRPM) were used in this program. An additional instrument that included the AVL Micro Soot Sensor (MSS) was used in conjunction with the Sensors PPMD to be considered a PM-PEMS. A series of steady state and transient tests were performed in a 40 CFR Part 1065 compliant engine dynamometer test cell using a 2007 on-highway heavy-duty diesel engine to quantify the accuracy and precision of the PEMS in comparison with the CVS filter-based method.
Technical Paper

Evaluation of Possible Methanol Fuel Additives for Reducing Engine Wear and/or Corrosion

1990-10-01
902153
The use of fuel additives is one possible approach to reduce wear and corrosion in methanol fueled automobile engines. One hundred and six compounds added to M100 fuel in modest concentrations (1%) were tested in a Ball on Cylinder Machine (BOCM) for their ability to improve lubricity. The most promising candidates were then tested in an engine using a modified ASTM Sequence V-D wear screening test. Additive performance was measured by comparing the buildup of wear metals in the oil to that obtained from an engine fueled with neat M100. The BOCM method of evaluating the additive candidates proved inadequate in predicting abrasive engine wear under the test conditions utilized for this research program.
Technical Paper

Electronic Data Acquisition and Analysis for the NHTSA ABS Fleet Evaluation

1990-10-01
902264
Antilock brake systems for air braked vehicles have been growing in popularity in Great Britain and Europe and appear to be candidates for extensive use in the United States as well. Previous mandated use in the United States during the 1970's was not successful, in part because of reliability problems, and the National Highway Traffic Safety Administration (NHTSA) has decided that a thorough evaluation of air brake antilock systems is necessary prior to any decision about the appropriateness of future mandatory use in the United States. This paper describes the electronic data collection equipment and processing techniques which are being used in the NHTSA 200 truck evaluation project. Detailed maintenance histories for each truck are being recorded manually as a separate segment of the project. An average of 6 to 7 megabytes of data per week is being collected in the various cities in which fleets are operating test vehicles.
Technical Paper

Electromagnetic Compatibility in the Off-Highway Vehicle

1991-09-01
911791
The key words in the marketplace for off-highway vehicles are durability, performance, and efficiency. A manufacturer of these vehicles recognizes that one way to successfully address these needs is by a well thought through electronics design. With the computer sophistication now being incorporated into off-highway vehicles, engineers must work closely to assure electromagnetic compatibility (EMC) of the entire system. A properly established EMC program extending from concept to final design will support each of a product's specified operations and still function as an integrated whole. This paper describes the process for designing the EMC for an off-highway vehicle.
Technical Paper

Preparation and Testing of an Electric Competition Vehicle

1991-08-01
911684
A Dodge Omni electric car was prepared for competition in an electric “stock car” 2-hour endurance event: the inaugural Solar and Electric 500 Race, April 7, 1991. This entry utilized a series-wound, direct-current 21-hp electric motor controlled by an SCR frequency and pulse width modulator. Two types of lead-acid batteries were evaluated and the final configuration was a set of 16 (6-volt each) deep-cycle units. Preparation involved weight and friction reduction; suspension modification; load, charge and temperature instrumentaltion; and electrical interlock and collision safety systems. Vehicle testing totalled 15 hours of operation. Ranges observed in testing with the final configuration were from 30 to 52 miles for loads of 175 to 90 amperes. These were nearly constant, continuous discharge cycles. The track qualifying speed (64mph) was near the 68 mph record set by the DEMI Honda at the event on the one-mile track.
Technical Paper

Heat Transfer Enhancement through Advanced Casting Technologies

2020-04-14
2020-01-1162
There is growing interest in additive manufacturing technologies for prototype if not serial production of complex internal combustion engine components such as cylinder heads and pistons. In support of this general interest the authors undertook an experimental bench test to evaluate opportunities for cooling jacket improvement through geometries made achievable with additive manufacturing. A bench test rig was constructed using electrical heating elements and careful measurement to quantify the impact of various designs in terms of heat flux rate and convective heat transfer coefficients. Five designs were compared to a baseline - a castable rectangular passage. With each design the heat transfer coefficients and heat flux rates were measured at varying heat inputs, flow rates and pressure drops. Four of the five alternative geometries outperformed the baseline case by significant margins.
Journal Article

Methanol Fuel Testing on Port Fuel Injected Internal-Only EGR, HPL-EGR and D-EGR® Engine Configurations

2017-10-08
2017-01-2285
The primary focus of this investigation was to determine the hydrogen reformation, efficiency and knock mitigation benefits of methanol-fueled Dedicated EGR (D-EGR®) operation, when compared to other EGR types. A 2.0 L turbocharged port fuel injected engine was operated with internal EGR, high-pressure loop (HPL) EGR and D-EGR configurations. The internal, HPL-EGR, and D-EGR configurations were operated on neat methanol to demonstrate the relative benefit of D-EGR over other EGR types. The D-EGR configuration was also tested on high octane gasoline to highlight the differences to methanol. An additional sub-task of the work was to investigate the combustion response of these configurations. Methanol did not increase its H2 yield for a given D-EGR cylinder equivalence ratio, even though the H:C ratio of methanol is over twice typical gasoline.
Technical Paper

In-Situ Measurement of Component Efficiency in Connected and Automated Hybrid-Electric Vehicles

2020-04-14
2020-01-1284
Connected and automated driving technology is known to improve real-world vehicle efficiency by considering information about the vehicle’s environment such as traffic conditions, traffic lights or road grade. This study shows how the powertrain of a hybrid-electric vehicle realizes those efficiency benefits by developing methods to directly measure real-time transient power losses of the vehicle’s powertrain components through chassis-dynamometer testing. This study is a follow-on to SAE Technical Paper 2019-01-0116, Test Methodology to Quantify and Analyze Energy Consumption of Connected and Automated Vehicles [1], to understand the sources of efficiency gains resulting from connected and automated vehicle driving. A 2017 Toyota Prius Prime was instrumented to collect power measurements throughout its powertrain and driven over a specific driving schedule on a chassis dynamometer.
Technical Paper

Investigation of Alternative Combustion, Airflow-Dominant Control and Aftertreatment System for Clean Diesel Vehicles

2007-07-23
2007-01-1937
A new diesel engine system adopting alternative combustion with rich and near rich combustion, and an airflow-dominant control system for precise combustion control was used with a 4-way catalyst system with LNT (lean NOx trap) to achieve Tier II Bin 5 on a 2.2L TDI diesel engine. The study included catalyst temperature control, NOx regeneration, desulfation, and PM oxidation with and without post injection. Using a mass-produced lean burn gasoline LNT with 60,000 mile equivalent aging, compliance to Tier II Bin 5 emissions was confirmed for the US06 and FTP75 test cycles with low NVH, minor fuel penalty and smooth transient operation.
X