Refine Your Search

Topic

Author

Search Results

Technical Paper

A Study of Engine Sensitivity to Spark Plug Rim-Fire

1998-05-04
981453
A recent study of engine sensitivity revealed that spark plugs used in conventional spark-ignited gasoline-fueled engines do not always fire in the intended fashion. Rather than firing to the ground strap during each ignition event, the arc frequently travels to the “rim” or “shell” of the spark plug. This behavior is termed rim-fire and although observed by other researchers in industry, its effects on engine performance are not widely reported. This paper addresses some of the quantitative effects of rim-fire on engine performance. Combustion data were recorded for various repeat conditions on a Ford 1.8L Zetec engine. The first set of engine tests used four, new, conventional, automotive spark plugs. The second set of engine tests used four modified spark plugs that induced 100% rim-fire when the ground strap was permanently removed. The study focused on part- and full-load engine performance, EGR tolerance, and step-transient characteristics.
Technical Paper

Development of a Novel Device to Improve Urea Evaporation, Mixing and Distribution to Enhance SCR Performance

2010-04-12
2010-01-1185
A novel urea evaporation and mixing device has been developed to improve the overall performance of a urea-SCR system. The device was tested with a MY2007 Cummins ISB 6.7L diesel engine equipped with an SCR aftertreatment system. Test results show that the device effectively improved the overall NO conversion efficiency of the SCR catalyst over both steady-state and transient engine operating conditions, while NH₃ slip from the catalyst decreased.
Technical Paper

A New Approach to Improving Fuel Economy and Performance Prediction through Coupled Thermal Systems Simulation

2002-03-04
2002-01-1208
Vehicle designers make use of vehicle performance programs such as RAPTOR™ to predict the performance of concept vehicles over ranges of industry standard drive cycles. However, the accuracy of such predictions may be greatly influenced by factors requiring more specialist simulation capabilities. For example, fuel economy prediction will be heavily influenced by the performance of the engine cooling system and its impact on the vehicle's aerodynamic drag, and the load from the air-conditioning system. To improve the predictions, specialist simulation capabilities need to be applied to these aspects, and brought together with the vehicle performance calculations through co-simulation. This paper describes the approach used to enable this cosimulation and the benefits achieved by the vehicle designer.
Technical Paper

Modeling, Simulation, and Hardware-in-the-Loop Transmission Test System Software Development

2003-03-03
2003-01-0673
This paper describes the development of a generic test cell software designed to overcome many vehicle-component testing difficulties by introducing modern, real-time control and simulation capabilities directly to laboratory test environments. Successfully demonstrated in a transmission test cell system, this software eliminated the need for internal combustion engines (ICE) and test-track vehicles. It incorporated the control of an advanced AC induction motor that electrically simulated the ICE and a DC dynamometer that electrically replicated vehicle loads. Engine behaviors controlled by the software included not only the average crankshaft torque production but also engine inertia and firing pulses, particularly during shifts. Vehicle loads included rolling resistance, aerodynamic drag, grade, and more importantly, vehicle inertia corresponding to sport utility, light truck, or passenger cars.
Technical Paper

Port Design for Charge Motion Improvement within the Cylinder

2016-04-05
2016-01-0600
The engine intake process governs many aspects of the flow within the cylinder. The inlet valve is the minimum area, so gas velocities at the valve are the highest velocities seen. Geometric configuration of the inlet ports and valves, and the opening schedule create organized large scale motions in the cylinder known as swirl and tumble. Good charge motion within the cylinder will produce high turbulence levels at the end of the compression stroke. As the turbulence resulting from the conversion energy of the inlet jet decays fast, the strategy is to encapsulate some of the inlet jet in the organized motions. In this work the baseline port of a 2.0 L gasoline engine was modified by inserting a tumble plate. The work was done in support of an experimental study for which a new single-cylinder research engine was set up to allow combustion system parameters to be varied in steps over an extensive range. Tumble flow was one such parameter.
Technical Paper

Ignition of Underbody and Engine Compartment Hydrogen Releases

2006-04-03
2006-01-0127
Various fire scenarios involving a hydrogen fuel system were simulated to evaluate their associated safety hazards. Scenarios included finite releases of hydrogen with delayed ignition as well as small hydrogen jet-fire releases. The scenarios tested resulted in minimal damage to the vehicle, minimal hazards to the vehicle's surroundings, and no observable damage or hazards within the passenger compartment.
Technical Paper

The Effect of Sparkplug Design on Initial Flame Kernel Development and Sparkplug Performance

2006-04-03
2006-01-0224
Tests were conducted on a variety of commercially available spark plugs to determine the influence of igniter design on initial kernel formation and overall performance. Flame kernel formation was investigated using high-speed schlieren visualization. The flame growth rate was quantified using the area of the burned gas region. The results showed that kernel growth rate was heavily influenced by electrode geometry and configuration. The igniters were also tested in a bomb calorimeter to determine the levels of supplied and delivered energy. The typical ratio of supplied to delivered energy was 20% and igniters with a higher internal resistance delivered more energy and had faster kernel formation rates. The exception was plugs with large amounts of conductive mass near the electrodes, which had very slow kernel formation rates despite relatively high delivered energy levels.
Technical Paper

Using the Cone Calorimeter to Predict FMVSS 302 Performance of Interior and Exterior Automotive Materials

2006-04-03
2006-01-1270
Forty-eight materials from parts used inside and outside the passenger compartment of six motor vehicles were tested according to FMVSS 302. All samples passed the test although the FMVSS 302 test requirements do not apply to exterior materials. The same materials were also tested in the Cone Calorimeter (ASTM E 1354) at three heat fluxes. The FMVSS 302 performance diagram developed earlier on the basis of Cone Calorimeter data for 18 exterior materials from two vehicles appears to have more general validity for solid plastic parts, regardless whether they are taken from locations inside or outside of the passenger compartment. The previously-developed performance diagram is not applicable to plastic foams and fabrics. Additional criteria are proposed to predict whether a foam or fabric is likely to pass the FMVSS 302 test based on ignition time and peak heat release rate measured in the Cone Calorimeter at a heat flux of 35 kW/m2.
Technical Paper

Comparative Abuse Testing of 36 V and 12 V Battery Designs

2006-04-03
2006-01-1272
Comparative abuse tests were performed on commercially available 12 V and 36 V battery designs. Four methods were chosen from SAE J2464 standard, Electrical Vehicle Battery Abuse Testing, March 1999, and modified to apply them to typical-sized automotive batteries. The four tests included a Penetration Test, Crush Test, Radiant Heat Test, and Short Circuit Test. Both the 12 V and 36 V batteries showed minimal reactions to the tests, and there was no significant difference between results of the two designs with respect to the abuse tests performed. It should be stressed however, that this project was limited in scope and was not intended to be a thorough investigation in the batteries safety hazards.
Technical Paper

Effect of Gas Composition on Octane Number of Natural Gas Fuels

1992-10-01
922359
The composition of natural gas delivered through the pipeline varies with time and location around the USA. These variations are known to affect engine performance and emissions through changes in fuel metering characteristics and knock resistance of the fuel. High output, low emissions natural gas engines are being developed that take advantage of the high knock resistance of natural gas. These optimized engines are operated close to knock-limited power where changes in fuel knock resistance can cause operational problems. Octane tests were conducted on natural gas blend fuels using a CFR octane rating engine. Two relationships between motor octane number and fuel composition were established. A correlation for motor octane number versus the reactive hydrogen-carbon ratio was developed, and octane weighting factors, which used the molar composition of the fuel to predict motor octane number, were also found.
Technical Paper

Simultaneous Application of Optical Spark Plug Probe and Head Gasket Ionization Probe to a Production Engine

1993-03-01
930464
The optical spark plug probe and ionization head gasket probe developed at Sandia Laboratories were applied to one cylinder of a production multicylinder automotive gasoline engine. The purpose of this application is to eventually study combustion phenomena leading to high emissions under cold start and cold idle conditions. As a first step in studying cold start combustion and emissions issues, diagnostic instrumentation was simultaneously applied to a production engine under steady state idle, road load and an intermediate load-speed condition. The preliminary application of such instrumentation is the subject of the present paper. The spark plug probe was redesigned for ease of use in production engines and to provide a more robust design. The two probes were geometrically oriented to obtain radial line-up between the optical windows and ionization probes. Data were taken simultaneously with both probes at the three load-speed conditions mentioned above.
Technical Paper

The Use of Radioactive Tracer Technology in Studying Lubricant Chemistry to Enhance Bearing and Ring Wear Control in an Operating Engine

1994-10-01
941982
Radioactive tracer technology (RAT) is an important tool in measuring component wear in an operating engine on a real-time basis. This paper will discuss the use of RAT to study and evaluate boundary lubricant and surfactant chemistries aimed at providing benefits in wear control. In particular, RAT was employed to study ring and bearing wear as a function of engine operating condition (speed, load, and temperature) and lubricant characteristics. Prior to testing, the engine's compression rings and connecting rod bearings were subjected to bulk thermal neutron bombardment in a nuclear reactor to produce artificial radioisotopes that were separately characteristic of the ring and bearing wear surfaces. The irradiated parts were installed in the test engine, after which testing to a specific test matrix was accomplished.
Technical Paper

EHC Impact on Extended Hot Soak Periods

1995-10-01
952418
Emission performance of a late model vehicle equipped with an electrically-heated catalytic converter (EHC) system was evaluated after extended vehicle soak periods that ranged from 30 to 180 minutes. As soak periods lengthened, NMHC and CO emissions measured in hot transient driving cycles increased by 125 percent and 345 percent, respectively. These tests were baseline operations which had no resistance heating or secondary air injection to the converter system. Sources of increased NMHC and CO emissions as a function of vehicle soak time were both the converter system cool-down characteristics and engine restart calibration strategy. For soak periods of 30 and 60 minutes, EHC resistance heating without secondary air injection resulted in large improvements in NMHC and CO emission performance (i.e., 74 percent and 54 percent lower NMHC emissions versus no heat, no air operation after a 30- and 60-minute period, respectively).
Technical Paper

Evaluation of Smoke Toxicity of Automotive Materials According to Standard Small-Scale Test Procedures

2005-04-11
2005-01-1558
This paper examines the role of inhalation toxicity of the products of combustion that are generated in post-collision motor vehicle fires by automotive materials used under the hood. Small-scale toxic gas measurements were performed at Southwest Research Institute® (SwRI®) on eighteen components of two of the vehicles that were tested previously at the Factory Mutual Test Center (FMTC). The small-scale toxic gas measurements were obtained under dynamic flow-through conditions in the Cone Calorimeter (ASTM E 1354) and under static conditions in two smoke chamber methods (ASTM E 662 and ASTM E 1995); all methods were supplemented with FTIR gas analysis. Average yields of toxic gases measured in the Cone Calorimeter are comparable to but consistently lower than values reported in the literature for the Fire Propagation Apparatus (ASTM E 2058).
Technical Paper

Comparative Evaluation of Automotive Fuel Tanks in General Accordance with ECE R34.01, Annex 5 Section 5.0 “Resistance to Fire”

2005-04-11
2005-01-1561
The primary objective of this study was to compare the performance of “new” plastic fuel tanks vs. “aged” plastic fuel tanks when subjected to the standard fire exposure test described in ECE R34.01, Annex 5 Section 5.0 “Resistance to Fire.” The program also included a comparison of failure modes of plastic vs. metal fuel tanks when subjected to a simulated post-crash pool fire. The “new” tanks were purchased from the OEM suppliers (not weathered or pre-conditioned with fuel). The “aged” tanks were obtained from vehicles that were operated in a warm climate and considered to be weathered and fully conditioned with fuel. Three vehicle types, representing three fuel tank shapes and installations, were evaluated: 1.) “thin profile” tank, typical of front wheel drive cars with the tank mounted on the underbody near the rear seat area and in front of the rear axle; 2.) “square profile” tank, typical of SUV's with the tank mounted behind the rear axle; and 3.)
Technical Paper

Hydrogen Fuel Tank Fire Exposure Burst Test

2005-04-11
2005-01-1886
A fire exposure test was conducted on a 72.4 liter composite (Type HGV-4) hydrogen fuel tank at an initial hydrogen pressure of 34.3 MPa (ca 5000 psi). No Pressure Relief Device was installed on the tank to ensure catastrophic failure for analysis. The cylinder ruptured at 35.7 MPa after a 370 kW fire exposure for 6 min 27 seconds. Blast wave pressures measured along a line perpendicular to the cylinder axis were 18% to 25% less the values calculated from ideal blast wave correlations using a blast energy of 13.4 MJ, which is based on the ideal gas internal energy at the 35.7 MPa burst pressure. The resulting hydrogen fireball maximum diameter of 7.7 m is about 19% less than the value predicted from existing correlations using the 1.64 kg hydrogen mass in the tank.
Technical Paper

Three-Point Belt Induced Injuries: A Comparison Between Laboratory Surrogates and Real World Accident Victims

1975-02-01
751141
Injuries produced by standard three point restraint systems with retractors will be compared between cadavers in laboratory simulated collisions at 30 mph barrier equivalent speed and lap and shoulder belted front seat occupants in real world frontal collisions of '73-'75 full sized cars. Tests conducted at SwRI with belted, unembalmed, fresh cadavers have resulted in extremely severe thoracic and cervical injuries, including multiple rib fractures, fractures of the sternum, clavicle and cervical vertebrae. On the other hand, injury data from a national accident investigation study to evaluate the effectiveness of restraints in late model passenger cars indicates that such injuries in real world crashes of equivalent severity are not always observed. The reasons possible for these differences are discussed. Both programs at SwRI are funded by the National Highway Traffic Safety Administration.
Technical Paper

A Critical Analysis of Traffic Accident Data

1975-02-01
750916
General agreement exists that the ultimate goals of traffic accident research are to reduce fatality, mitigate injury and decrease economic loss to society. Although massive quantities of data have been collected in local, national and international programs, attempts by analysts to use these data to explore ideas or support hypotheses have been met by a variety of problems. Specifically, the coded variables in the different files are not consistent and little information on accident etiology is collected. Examples of the inadequacies of present data in terms of the collected and coded variables are shown. The vehicular, environmental and human (consisting of human factors and injury factors) variables are disproportionately represented in most existing data files in terms of recognized statistical evidence of accident causation. A systems approach is needed to identify critical, currently neglected variables and develop units of measurement and data collection procedures.
Technical Paper

the behavior of Radiation-Resistant ANP TURBINE LUBRICANTS

1959-01-01
590051
RADIATION can produce almost instantaneous failure of modern aircraft lubricants, tests at Southwest Research Institute show. Two types of failures demonstrated are rapid viscosity rise and loss of heat conductivity. Furthermore, it was found that lubricants can become excessively corrosive under high-level radiation. Generally speaking, the better lubricants appeared to improve in performance while marginal ones deteriorated to a greater extent under radiation. When the better lubricants were subjected to static irradiation prior to the deposition test, there was a minor increase in deposition number as the total dose was increased.
Technical Paper

Noise Reduction Techniques as They Apply to Engine-Generator Design and Treatment

1969-02-01
690755
Small engines may require soundproofing to eliminate one or more of the following effects: hearing loss, speech interference, community annoyance, detectability, and psychological disorientation. Detectability criteria are frequently associated with military applications and may require the use of a soundproof enclosure in addition to other engine treatments. Acoustical noise sources are conveniently classed as either aerodynamic or mechanical. Aerodynamic sources are predominant on small engines. Treatment of exhaust noise by individual components, e.g., muffler, is inadequate; a system approach, through the use of an electro-acoustic analog computer, has proved to be a much more satisfactory procedure.
X