Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Pathline Analysis of Full-cycle Four-stroke HCCI Engine Combustion Using CFD and Multi-Zone Modeling

2008-04-14
2008-01-0048
This paper investigates flow and combustion in a full-cycle simulation of a four-stroke, three-valve HCCI engine by visualizing the flow with pathlines. Pathlines trace massless particles in a transient flow field. In addition to visualization, pathlines are used here to trace the history, or evolution, of flow fields and species. In this study evolution is followed from the intake port through combustion. Pathline analysis follows packets of intake charge in time and space from induction through combustion. The local scalar fields traversed by the individual packets in terms of velocity magnitude, turbulence, species concentration and temperatures are extracted from the simulation results. The results show how the intake event establishes local chemical and thermal environments in-cylinder and how the species respond (chemically react) to the local field.
Journal Article

Dual-Wavelength PLIF Measurements of Temperature and Composition in an Optical HCCI Engine with Negative Valve Overlap

2009-04-20
2009-01-0661
Negative valve overlap (NVO) is a valve strategy employed to retain and recompress residual burned gases to assist HCCI combustion, particularly in the difficult regime of low-load operation. NVO allows the retention of large quantities of hot residual burned gases as well as the possibility of fuel addition for combustion control purposes. Reaction of fuel injected during NVO increases charge temperature, but in addition could produce reformed fuel species that may affect main combustion phasing. The strategy holds potential for controlling and extending low-load HCCI combustion. The goal of this work is to demonstrate the feasibility of applying two-wavelength PLIF of 3-pentanone to obtain simultaneous, in-cylinder temperature and composition images during different parts of the HCCI/NVO cycle. Measurements are recorded during the intake and main compression strokes, as well as during the more challenging periods of NVO recompression and re-expansion.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Technical Paper

Improving the NOX-CO2 Trade-Off of an HCCI Engine Using a Multi-Hole Injector

2007-04-16
2007-01-0180
The combustion and emission performance of two high-pressure GDI-type injectors are compared in an automotive HCCI engine during low-load, stratified operation. One of these, an 8-hole injector with 70° spray angle, provides significant reduction in NOX emissions at a given fuel-to-CO2 conversion efficiency (i.e., an improved NOX-CO2 trade-off) compared to the other, a 53° swirl injector. In contrast, attempts to enhance the NOX-CO2 trade-off using alternate charge-stratification strategies such as split injection and high intake velocity are shown to be less successful. The 8-hole and swirl injectors are also compared using the optical techniques of Mie scattering (spray visualization), laser-induced fluorescence imaging (fuel distribution measurement), and direct combustion imaging. The resulting data suggest two possible explanations for the superior performance of the 8-hole injector.
X