Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

Cost and Fuel Efficient SCR-only Solution for Post-2010 HD Emission Standards

2009-04-20
2009-01-0915
A promising SCR-only solution is presented to meet post-2010 NOx emission targets for heavy duty applications. The proposed concept is based on an engine from a EURO IV SCR application, which is considered optimal with respect to fuel economy and costs. The addition of advanced SCR after treatment comprising a standard and a close-coupled SCR catalyst offers a feasible emission solution, especially suited for EURO VI. In this paper, results of a simulation study are presented. This study concentrates on optimizing SCR deNOx performance. Simulation results of cold start FTP and WHTC test cycles are presented to demonstrate the potential of the close-coupled SCR concept. Comparison with measured engine out emissions of an EGR engine shows that a close-coupled SCR catalyst potentially has NOx reduction performance as good as EGR. Practical issues regarding the use of an SCR catalyst in close-coupled position will be addressed, as well as engine and exhaust layout.
Journal Article

Robust Emission Management Strategy to Meet Real-World Emission Requirements for HD Diesel Engines

2015-04-14
2015-01-0998
Heavy-duty diesel engines are used in different application areas, like long-haul, city distribution, dump truck and building and construction industry. For these wide variety of areas, the engine performance needs to comply with the real-world legislation limits and should simultaneously have a low fuel consumption and good drivability. Meeting these requirements takes substantial development and calibration effort, where an optimal fuel consumption for each application is not always met in practice. TNO's Integrated Emission Management (IEM) strategy, is able to deal with these variations in operating conditions, while meeting legislation limits and obtaining on-line cost optimization. Based on the actual state of the engine and aftertreatment, optimal air-path setpoints are computed, which balances EGR and SCR usage.
Journal Article

Integrated Emission Management strategy for cost-optimal engine-aftertreatment operation

2011-04-12
2011-01-1310
A new cost-based control strategy is presented that optimizes engine-aftertreatment performance under all operating conditions. This Integrated Emission Management strategy minimizes fuel consumption within the set emission limits by on-line adjustment of air management based on the actual state of the exhaust gas aftertreatment system. Following a model-based approach, Integrated Emission Management offers a framework for future control strategy development. This approach alleviates calibration complexity, since it allows to make optimal trade-offs in an operational cost sense. The potential of the presented cost-optimal control strategy is demonstrated for a modern heavy-duty Euro VI engine. The studied diesel engine is equipped with cooled EGR, Variable Geometry Turbocharger, and a DPF-SCR aftertreatment system.
Technical Paper

Appliance of High EGR Rates With a Short and Long Route EGR System on a Heavy Duty Diesel Engine

2007-04-16
2007-01-0906
The goal of this work was to investigate the possibilities of applying high EGR rates with low NOx and PM emission levels on a two-stage turbocharged 12 liter heavy duty diesel engine. The EGR is applied by using a long and short route EGR system. For the ESC operating points A25 and C100 EGR is applied, such that the NOx emission is 0.5 g/kWh. Lowest PM level and BSFC are achieved when long route EGR is applied in A25 and short route is applied in C100. Increasing the fuel line pressure is an effective way to reduce PM at high EGR rate engine running conditions. At a fuel line pressure of 2400 bar PM emission are 0.06 g/kWh for A25 and 0.54 g/kWh for C100. At C100 the PM reduction coincides with also a significant fuel consumption improvement. Retarding the injection timing at C100 can improve the PM emission further to a level of 0.13 g/kWh at the expense of an increase in BSFC.
Technical Paper

The Climatic-Altitude Chamber as Development and Validation Tool

2010-04-12
2010-01-1294
Two major trends can be identified for powertrain control in the next decade. The legislation will more and more focus on in-use emissions. Together with the global trend to reduce the CO₂ emissions, this will lead to an integral drive train approach. To develop and validate this integral drive train approach, the need for a new chapter in powertrain testing arises. The climatic-altitude chamber, suited for heavy vehicles, serves a wide variety of testing needs. Ambient temperature can be controlled between -45°C and +55°C and ambient pressure can be reduced up to a level found at an altitude to 4000 meters. The chamber's dynamometers enable transient testing of heavy-duty engines and vehicles and the chamber is equipped with a comprehensive array of emission measurement capabilities, working under extreme conditions.
Technical Paper

DAF Euro-4 Heavy Duty Diesel Engine with TNO EGR system and CRT Particulates Filter

2001-05-07
2001-01-1947
This paper reports on a study of the TNO venturi EGR system and the Johnson Matthey CRT particulates trap on a DAF 355 kW engine. The results obtained indicate that this EGR-CRT combination is an effective means to achieve EURO-4 emission level, while maintaining good fuel economy. EGR strategy, injection timing and air-fuel ratio were optimised in such a way that good regeneration conditions were obtained across most of the engine operating map. Also transient EGR control is optimised to combine low NOx emission during the ETC with good driveability and good engine out particulates emission. The size of the oxidation catalyst in the CRT was investigated. It appeared that the larger oxidation catalyst showed a better regeneration performance during a low temperature duty-cycle. Negative aspects of a larger oxidation catalyst are increased costs and increased NO2 emission (because of the catalyst ability to oxidise more NO into NO2).
Technical Paper

Engine Dynamometer and Vehicle Performance of a Urea SCR-System for Heavy-Duty Truck Engines

2002-03-04
2002-01-0286
The application of SCR deNOx aftertreatment was studied on two about 12 liter class heavy-duty diesel engines within a consortium project. Basically, the system consists of a dosage system for aqueous urea injection and a vanadia based SCR catalyst, without an upstream or downstream oxidation catalyst. The urea injection system for a DAF and a Renault V.I. (Véhicules Industriels) diesel engine was calibrated on the engine test bench taking into account dynamic effects of the catalyst. For both engine applications NOx reduction was 81% to 84% over the ESC and 72% over the ETC. CO emission increased up to 27%. PM emission is reduced by 4 to 23% and HC emission is reduced by more than 80%. These results are achieved with standard diesel fuel with about 350 ppm sulfur. The test engines and SCR deNOx systems were built into a DAF FT95 truck and a Renault V.I. Magnum truck.
Technical Paper

Determination of Human-Seat-Interaction in Vertical Vibrations in MADYMO

2002-11-18
2002-01-3083
The importance of automotive comfort is increasing, both socially and economically. Especially professional drivers often have comfort-related physical complaints, such as lower back pain. In addition, car manufacturers can use comfort to distinguish their cars from their competitors. However, the development and design of a new, more comfortable car seat is very time consuming and costly. The use of computer models of human and seat could facilitate this process. MADYMO human and seat models offer the possibility to predict comfort. This paper describes the application of the MADYMO multi-body 50th percentile human model for determination of human-seat interaction in vertical vibrations. The validation of the human model is based on volunteer tests with both a rigid seat and a standard car seat. The human model shows a good correlation with the volunteers.
Technical Paper

Development of a Model-Based Controller for a Three-Way Catalytic Converter

2002-03-04
2002-01-0475
The performance of a three-way catalytic converter under transient operation can be improved by controlling the level of oxygen stored on ceria at some optimal level. A model-based controller, with the model estimating the level of ceria coverage by oxygen, can achieve this goal. A simple, dynamic model is based on step responses of the converter and is used to train the controller off-line. The controller is a neuro-fuzzy approximation of a model predictive controller. Thus, it retains a high performance while being less computationally involving. The system performance has been experimentally tested by a specially designed, highly transient test cycle.
Technical Paper

Spinal Muscle Modelling for Prediction of Human Resonance Behaviour in Vertical Vibrations by Numerical Simulations

2005-06-14
2005-01-2711
The impact of comfort is becoming increasingly important. On one hand, manufacturers use comfort to distinguish their products from their competitors. On the other hand, more cars than ever are used professionally. The prolonged sitting in automotive conditions of professional drivers introduced new physical complaints, resulting in high social costs. However, the cause of these complaints is not well understood. The use of virtual testing tools can contribute to both speeding up and reducing the costs of the development process of new more comfortable cars and the research in the causes of the new complaints. Vibration loading has often been identified as a source of discomfort. In literature, several human models developed for prediction of human resonance behaviour in vibrations were described. In most of these human body models, the muscles are represented in a simplified way.
Technical Paper

Detailed Modelling of the Lumbar Spine for Investigation of Low Back Pain

2005-06-14
2005-01-2716
Comfort of car seats is becoming an increasingly important issue in the design of vehicles for professional use as well as for personal use. People using cars professionally, like drivers of taxis, trucks, and busses, often have to drive for prolonged periods sometimes leading to physical complaints, like e.g. low back pain. Apart from experimental investigations, virtual testing is becoming more important to get more insight in the problem of low back pain. This paper presents a finite element (FE) model of the lumbar spine (L1-L5). The model contains a detailed geometric description of the lumbar spine and realistic material properties. On a segmental level and as a whole, the model's response was verified for quasi-static and dynamic conditions based on experimental data published in literature. The quasi-static segmental validation comprised of compression, posterior, anterior and lateral shear, flexion and extension, lateral bending and axial torque.
Technical Paper

A Finite Element Lower Extremity and Pelvis Model for Predicting Bone Injuries due to Knee Bolster Loading

2004-06-15
2004-01-2130
Injuries to the knee-thigh-hip (KTH) complex in frontal motor vehicle crashes are of substantial concern because of their frequency and potential to result in long-term disability. Current frontal impact Anthropometric Test Dummies (ATDs) have been shown to respond differently than human cadavers under frontal knee impact loading and consequently current ATDs (and FE models thereof) may lack the biofidelity needed to predict the incidence of knee, thigh, and hip injuries in frontal crashes. These concerns demand an efficient and biofidelic tool to evaluate the occurrence of injuries as a result of KTH loading in frontal crashes. The MADYMO human finite element (FE) model was therefore adapted to simulate bone deformation, articulating joints and soft tissue behavior in the KTH complex.
Technical Paper

Application of a Finite Element-Based Human Arm Model for Airbag Interaction Analysis

2004-06-15
2004-01-2147
Interaction of the human arm and deploying airbag has been studied in the laboratory using post mortem human subjects (PMHS). These studies have shown how arm position on the steering wheel and proximity to the airbag prior to deployment can influence the risk of forearm bone fractures. Most of these studies used older driver airbag modules that have been supplanted by advanced airbag technology. In addition, new numerical human body models have been developed to complement, and possibly replace, the human testing needed to evaluate new airbag technology. The objective of this study is to use a finite element-based numerical (MADYMO) model, representing the human arm, to evaluate the effects of advanced driver airbag parameters on the injury potential to the bones of the forearm. The paper shows how the model is correlated to Average Distal Forearm Speed (ADFS) and arm kinematics from two PMHS tests.
Technical Paper

Numerical Prediction of Seating Position in Car Seats

2004-06-15
2004-01-2168
Two of the main design objectives for car interiors are comfort and safety. These aspects are both determined by the seating position of the occupant. Seat manufacturers use the SAE Three-Dimensional H-Point Machine™ to measure seating positions to design, audit, and benchmark seats. The seating positions measured with the H-Point Machine form the basis of a seat design, including comfort and safety aspects. Currently, the seat design process is largely based on prototype testing, which makes this process time-consuming and expensive. Consequently, there is a large demand for efficient design tools that enable an optimal combination of seating comfort and safety aspects. Numerical modeling provides an efficient means to optimally combine various seat design characteristics prior to prototype testing, thereby reducing design costs and time-to-market.
Technical Paper

Assessment Methodologies for Forward Looking Integrated Pedestrian Systems and Further Extension to Cyclist Safety: Experimental and Virtual Testing for Pedestrian Protection

2015-01-14
2015-26-0160
Pedestrians and cyclists are the most unprotected road users and their injury risk in case of accidents is significantly higher than for other road users. The understanding of the influence and sensitivity between important variables describing a pedestrian crash is key for the development of more efficient and reliable safety systems. This paper reflects the related work carried out within the AsPeCSS project. The results summarized out of virtual and physical tests provide valuable information for further development. 1168 virtual and 120 physical tests were carried out with adult and child pedestrian headform as well as upper and lower legform impactors representatives of 4 different vehicle front geometries in a wide range of impact speeds, angles and locations. This test matrix was based on previous work carried out within the AsPeCSS project.
Technical Paper

Experimental Demonstration of RCCI in Heavy-Duty Engines using Diesel and Natural Gas

2014-04-01
2014-01-1318
Premixed combustion concepts like PCCI and RCCI have attracted much attention, since these concepts offer possibilities to reduce engine out emissions to a low level, while still achieving good efficiency. Most RCCI studies use a combination of a high-cetane fuel like diesel, and gasoline as low-cetane fuel. Limited results have been published using natural gas as low-cetane fuel; especially full scale engine results. This study presents results from an experimental study of diesel-CNG RCCI operation on a 6 cylinder, 8 l heavy duty engine with cooled EGR. This standard Tier4f diesel engine was equipped with a gas injection system, which used single point injection and mixed the gaseous fuel with air upstream of the intake manifold. For this engine configuration, RCCI operating limits have been explored. In the 1200-1800 rpm range, RCCI operation with Euro-VI engine out NOx and soot emissions was achieved between 2 and 9 bar BMEP without EGR.
Technical Paper

Evaluation of the Performance of the Thor-Alpha Dummy

2003-10-27
2003-22-0023
Six European laboratories have evaluated the biomechanical response of the new advanced frontal impact dummy THOR-alpha with respect to the European impact response requirements. The results indicated that for many of the body regions (e.g., shoulder, spine, thorax, femur/knee) the THOR-alpha response was close to the human response. In addition, the durability, repeatability and sensitivity for some dummy regions have been evaluated. Based on the tests performed, it was found that the THOR-alpha is not durable enough. The lack in robustness of the THOR-alpha caused a problem in completing the full test program and in evaluating the repeatability of the dummy. The results have demonstrated that the assessment of frontal impact protection can be greatly improved with a more advanced frontal impact dummy. Regarding biofidelity and injury assessment capabilities, the THOR-alpha is a good candidate however it needs to be brought up to standard in other areas.
Technical Paper

ES2 Neck Injury Assessment Reference Values for Lateral Loading in Side Facing Seats

2009-11-02
2009-22-0015
Injury assessment reference values (IARV) predicting neck injuries are currently not available for side facing seated aircraft passengers in crash conditions. The aircraft impact scenario results in inertial loading of the head and neck, a condition known to be inherently different from common automotive side impact conditions as crash pulse and seating configurations are different. The objective of this study is to develop these IARV for the European Side Impact Dummy-2 (ES-2) previously selected by the US-FAA as the most suitable ATD for evaluating side facing aircraft seats. The development of the IARV is an extended analysis of previously published PMHS neck loads by identifying the most likely injury scenarios, comparing head-neck kinematics and neck loads of the ES2 versus PMHS, and development of injury risk curves for the ES2. The ES2 showed a similar kinematic response as the PMHS, particularly during the loading phase.
Journal Article

A European Regulatory Perspective towards a Euro 7 Proposal

2022-06-14
2022-37-0032
The implementation of emission standards has brought significant reductions in vehicle emissions in the EU, but road transport is still a major source of air pollution. Future emission standards will aim at making road vehicles as clean as possible under a wide range of driving conditions and throughout their complete lifetime. The current paper presents the methodology followed by the Consortium for ultra LOw Vehicle Emissions (CLOVE) to support the preparation of the Euro 7 proposal. As a first step, the emission performance of the latest-technology vehicles under various driving conditions was evaluated. Towards this direction, an emissions database was developed, containing data from a wide range of tests, both within and beyond the current RDE boundaries.
Technical Paper

On-Board Monitoring of Emissions in the Future Euro 7 Standard

2023-08-28
2023-24-0111
The proposed Euro 7 emission standard foresees that the emission behaviour of Euro 7 vehicles is monitored via an on-board monitoring (OBM) system. In Euro 7 vehicles, OBM systems will monitor the emissions of nitrogen oxides (NOX), ammonia (NH3) and particulate matter (PM) for every trip through a combination of measured and modelled data. Sensors employed to support on-board diagnostics (OBD) in current vehicles may be used to support OBM. According to the Euro 7 OBM concept presented in this paper, OBM will serve a dual purpose: the first is to warn the user of a vehicle about the need to perform repairs on the engine or the pollution control systems when these are needed. If these repairs are not performed in a timely manner, the OBM system will be able to ultimately prevent engine restart, akin to the existing low-reagent driver warning system in some compression ignition vehicles. The second purpose of OBM is to monitor the compliance of vehicle types with the emission limits.
X