Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Welding Consumables on Static and Dynamic Properties of Representative Welded Joints for Chassis Structure

2021-09-22
2021-26-0259
Automotive suspension system forms the basis for the design of vehicle with durability, reliability, dynamics and NVH requirements. The automotive suspension systems are exposed to dynamic and static loads which in turn demands the highest integrity and performance against fatigue based metallic degradation. The current focus in automotive industry is to reduce the weight of the automotive parts and components without compromising with its static and dynamic mechanical properties. This weight reduction imparts fuel efficiency with added advantages. High-Strength Low Alloy steel (HSLA) offers optimum combination of ductility, monotonic and cyclic mechanical properties. Furthermore, welding processes offer design flexibility to achieve robust and lightweight designs with high strength steels.
Technical Paper

Innovative Approach to Address BS VI Challenges of NVH Refinement and Total Cost of Ownership of Small Commercial Vehicles with Naturally Aspirated Two Cylinder Diesel Engines

2021-09-22
2021-26-0284
Small commercial vehicles (SCVs) are the drivers of a major part of India’s indirect economy, providing the most efficient means of transport. With the introduction of BS-VI norms, some major overhauls have been done to the SCV models to meet BS VI norms in challenging timeline for early market entry. This forced to automotive designers towards challenge of cost competitiveness as well as refinement level to survive in this competitive market. This paper explains the systematic approach used to overcome challenges of higher tactile vibrations, higher in-cab noise because of BS VI requirement in 2 cycle engine required for small commercial vehicle. The solutions were need to be worked out without compromising the other performance attributes like total cost of ownership, fuel economy, ease of servicing and cost effectiveness.
Technical Paper

Overview of Various Scratch Test Methods for High Gloss Polymer Materials

2021-09-22
2021-26-0448
Polymers are substituting traditional materials, such as metals, in existing as well as new applications, both for structural and aesthetic applications as they are lightweight, customizable and are easy to mould into complex shapes. With such an extensive use of polymers, there is a need to carefully scrutinize their performance to ensure reliability. This is particularly the case in the automotive and electronic industries where the aesthetic appeal of their products is of prime concern and any visible scratch damage is undesirable. Concern for aesthetics has led to a need for the quantification of visibility due to scratch damage on polymeric surfaces Many painted plastic parts used in vehicles are being replaced with the molded-in color plastics for cost reduction and also due to environmental concerns associated with solvent emissions. There are multiple methods used for scratch evaluation of polymers and paints.
Technical Paper

Effects of Environmental Factors on Flexural Properties of Long Fiber Reinforced Polymer Composite

2021-09-22
2021-26-0257
Environmental regulation, operating cost reduction and meeting stringent safety norms are the predominant challenges for the automotive sector today. Automotive OEMs are facing equally aggressive challenges to meet high fuel efficiency, superior performance, low cost and weight with enhanced durability and reliability. One of the key technologies which enable light weighting and cost optimization is the use of fiber reinforced polymer (FRP) composite in automotive chassis systems. FRP composites have high specific strength, corrosion and fatigue resistance with additional advantage of complex near net shape manufacturing and tailor made properties. These advantages makes FRPs an ideal choice for replacing conventional steel chassis automotive components. However, FRP’s face challenges from operating environment, in particular temperature and moisture.
Technical Paper

Continuous Fiber Reinforced Composite Container for N1 Category of Vehicles

2021-09-22
2021-26-0251
The small commercial vehicle business is driven by demand in logistic, last mile transportation and white goods market. And to cater these businesses operational and safety needs, they require closed container on vehicle. As of now, very few OEM’s provide regulatory certified container vehicle because of constrains to meet inertia class of the vehicle. This paper focuses on design of a durable and extremely reliable container, made of the low-cost economy class glass fibre & core material. The present work provides the means to design the composite container for the N1 category of the vehicle. The weight of after-market metal container ranges between 300-350 Kg for this category of vehicle, which affects the overall fuel economy and emission of the vehicle. A detailed CAE analysis is done to design composite container suitable to meet inertia class targets and to achieve weight reduction of 30-40% as compared to metal container.
Technical Paper

Weight Optimisation of Dumper Body Structure Conserving Stiffness, Buckling and Dent Performance

2017-01-10
2017-26-0304
The entire commercial vehicle industry is moving towards weight reduction to leverage on the latest materials available to benefit in payload & fuel efficiency. General practice of weight reduction using high strength steel with reduced thickness in reference to Roark’s formula does not consider the stiffness & dent performance. While this helps to meet the targeted weight reduction keeping the stress levels within the acceptable limit, but with a penalty on stiffness & dent performance. The parameters of stiffener like thickness, section & pitching are very important while considering the Stiffness, bucking & dent performance of a dumper body. The Finite Element Model of subject dumper body has been studied in general particularly on impact of dent performance and is correlated with road load data to provide unique solution to the product. The impact of payload during loading of dumper is the major load case.
Technical Paper

Optimization of AC Control in Hybrid Electric Vehicles during Urban Drive Conditions

2017-01-10
2017-26-0087
Hybridization of vehicle drive train is an important step to increase energy security, reduce crude oil import, improvement of air quality and GHG reduction. Heavy traffic congestion poses a great challenge in improvement of fuel economy. Nowadays urban climatic condition forces the passenger to keep air-conditioning (AC) on; thus further decreasing the fuel economy. In a typical urban drive; the vehicle commutes with low speed forcing IC Engine to run in its low efficiency operational points. Further it is characterized by frequent start-stop and crawling. It has been observed that the power consumption for AC is comparable to that required for the vehicle propulsion. Hence the AC on condition with propelling vehicle demands higher power from engine creating a challenge for fuel economy improvement.
Technical Paper

Energy Efficient Hydraulic Power Assisted Steering System (E2HPAS)

2012-04-16
2012-01-0976
A hydraulic-assisted power steering system on a vehicle has a steering pump which is directly driven from the engine continuously. In real world, the assistance from the steering pump is useful only while maneuvering. During a typical highway drive, assistance from this power steering pump remains unused for majority (76%) of the time; although the continuously rotating power steering pump keeps consuming energy from the engine. An electronic controller has been provided for the electro-magnetic pairing device of the power steering pump in order to provide assistance for steering based on driver demand only. The electromagnetic pairing device integrated on the steering pump can be made to engage/disengage based on the driver demand through the electronic controller.
Technical Paper

Solar Assisted Vehicle Electrical System (S.A.V.E.)

2012-04-16
2012-01-1058
S.A.V.E. (SOLAR-ASSISTED VEHICLE ELECTRICAL SYSTEM) is a microcontroller-based closed loop system designed to optimize the duty cycle of alternator in conventional vehicle electrical system. This has been done by integrating a SOLAR PANEL on the rooftop of a popular hatchback. The SOLAR PANEL supplies continuous power to battery for charging thereby reducing alternator duty cycle. Consequently, in order to optimize/control alternator functioning based on demand, a microcontroller has been incorporated. S.A.V.E. consists of a microcontroller which senses the instantaneous electrical load (in terms of current & voltage drawn) from battery. The controller using the intelligent algorithm keeps on checking this real-time consumption with the threshold values & decides when to activate/deactivate alternator. Thus with this controller, a) reduction in actual CO₂ emission & consequent, and b) 6% improvement in vehicle fuel efficiency has been achieved.
Technical Paper

Opportunities and Control Measures for Sustainable Transport Growth in Emerging Economy Regions-India

2013-04-08
2013-01-1037
Sustainable development is a very complex concept involving several inter-related issues and concerns. Globalization has given a new dimension to social, economic and environmental development associated with the perceived responsibilities and growth indicators. Both developing and developed countries have the opportunities to exploit comparative advantages in the changing economic, social and environmental scenario while targeting sustainable growth together with expansion of the business prospects. Every region perceives these opportunities with different notion. There is a plethora of indicators for assessing sustainability. However, assessment criteria, prioritization and trade off for a given sustainability parameter against the other could be very complex while evolving transport growth model in emerging economies.
Technical Paper

Study of Key Attributes of Sustainability of Automobile Solutions in India

2022-10-05
2022-28-0313
The changing mobility landscape of India reveals that the erstwhile transport modes of the 20th century i.e., railways and road buses are making way for airlines, personal vehicles, shared mobility, metro rails. Rapid technological changes, stricter regulations, new transport cultures autonomous, connected, electric and shared (ACES), state-of-the-art and environmental concerns are shaping up the eco-system for automobiles. Despite these challenges roadways and automobiles will continue to be most prominent solution in India for future. But for that, the automobile sector should be agile, innovative, and adaptable to changing eco-system, vigilant to thwart threat of alternate mobility solutions and must provide sustainable solutions for the future. The purpose of this paper to evaluate various mobility solutions, ascertain prominence of upcoming automobile solutions and their sustainability for future in India.
Technical Paper

Seat Structure Comfort Evaluation Using Pink Noise and Human/Dummy Transmissibility Correlation

2013-11-27
2013-01-2852
Vehicle floor vibration is the resultant of different road inputs damped through various transfer paths. Seat comfort, which depends on these floor vibrations, can be evaluated with a single input signal “Pink noise”; which constitutes various road inputs. Transmissibility of seat structure on a vibration shaker with pink noise input includes all possible responses of road inputs. Still, transmissibility profile at vehicle end and component level varies. This is due to the utilization of “dummy” on component level testing on vibration shaker, which acts as a dead weight with dissimilar damping characteristics of human. A transmissibility correlation between human and dummy is attained by replacing the dummy in place of human and actuating it to find the difference in contribution between them for different class of vehicles. This contribution extrapolation from the damping effects of human and dummy is applied on dummy transmissibility.
Technical Paper

Simulation of Clutch Inertial Effects on Gear Shifting, Synchronizer Capacity and Accelerated Testing of Synchronizers

2013-11-27
2013-01-2807
In today's scenario, most of the OEMs use manual transmissions with synchronizer gear shifting system for ease of gear shifting. It gives very high fuel efficiency. Gear shifting is a customer touch point, hence it is very important to select adequate synchronizer capacity so that it will perform in better and last longer. To test the synchronizers, there are many test methods which give the idea about life of synchronizer and its performance, in different conditions. Regular synchronizer rig tests consume lot of time in deriving the results. So it is very important to find out a way which will give same results within short time period. To carry out the short time test or accelerated test, we need to understand the effect of various factors like reflected inertia, drag torque, differential speed, synchronizing time, and gear shifting force on synchronizer capacity.
Technical Paper

Simulation Based Development, Component Optimization and Integration for a Metropolitan Hybrid Electric Vehicle

2017-01-10
2017-26-0084
The authors of this technical paper conceptualize and illustrate a powertrain architecture for a hybrid electric vehicle coupled with a unique strategy to reduce a real life problem of driving in snail paced traffic. This architecture utilizes a relatively low powered hybrid electric prime mover that is generally used in mild hybrid vehicles, in an arrangement similar to a parallel hybrid system. Here, the electric machine is mounted on the input shaft of the gearbox and the clutch is actuated automatically through an Automated Manual Transmission (AMT) system. Therefore, it is possible to completely disengage the engine from the driveline and drive the vehicle independently through an appropriately sized electric prime mover. The high gear ratio between the drivetrain and the electric prime mover at lower gears can be leveraged to provide low velocity electric creep mode during which the vehicle can function as a pure Electric Vehicle (EV) while engine remains off.
Technical Paper

NVH Refinement of Small Gasoline Engine through Digital and Experimental Approach

2017-01-10
2017-26-0211
Today’s competitive market demands for low cost passenger cars with lighter, smaller size, peppy response and fuel efficient engines and having world class NVH refinement levels. For such requirements, it is essential to optimize the product starting from the design conceptual stage, considering all performance aspects. Generally, three cylinder engines, due to less reciprocating masses, compared to four-cylinder engine, are said to be fuel efficient for the same capacity. Nevertheless, NVH problems caused by inherent imbalance forces and couples remain as drawback of the three-cylinder engine. However, through optimal design of the crank train, control of cylinder to cylinder pressure variation, stiffening of the engine structure, optimizing the integration with a vehicle through proper design of mounts, NVH refinement levels can be improved.
Technical Paper

Body Block FE Model Development and Correlation with Physical Tests

2017-01-10
2017-26-0293
Steering column and steering wheel are critical safety components in vehicle interior environment. Steering system needs to be designed to absorb occupant impact energy in the event of crash thereby reducing the risk of injury to the occupant. This is more critical for non-airbag vehicle versions. To evaluate the steering system performance, Body block impact test is defined in IS11939 standard [1]. Nowadays for product development, CAE is being extensively used to reduce development cycle time and minimize number of prototypes required for physical validation. In order to design the steering system to meet the Body Block performance requirements, a detailed FE model of Body Block impactor is required. The static stiffness and moment of inertia of body block are defined in SAE J244a [2]. The reference data available in SAE J244a is not sufficient to develop a Body Block model that would represent the physical impactor.
Technical Paper

Simulation of Heavy Commercial Vehicle Response to Rear Super Single Tire Blow Out

2017-01-10
2017-26-0341
The fuel economy of heavy commercial vehicles can be significantly improved by reducing the rolling resistance of tires. To reduce the rolling resistance of 6×4 tractor, the super single tires instead of rear dual wheel tires are tried. Though the field trials showed a significant increase in fuel economy by using super single tires, it posed a concern of road safety when these tires blowout during operation. Physical testing of tire blowout on vehicle is very unsafe, time consuming and expensive. Hence, a full vehicle simulation of super single tire blowout is carried out. The mechanical properties of tires such as cornering stiffness, radial stiffness and rolling resistance changes during the tire blowout; this change is incorporated in simulation using series of events that apply different gains to these mechanical properties.
Technical Paper

CAE Based Head Form Impact Simulations for Development of Vehicle Interiors

2019-01-09
2019-26-0237
The interior components of a passenger vehicle are designed to provide comfort and safety to its occupants. In the event of accident, vehicle interiors are primary source of injuries when occupants interact with them. Vehicle interiors consists of Instrument panel (IP), center console, seats and controls in front of seating position etc. Severity of the injuries depends on the energy dissipating characteristics, profiles, projections of different interior components. These are assessed by ECE R21 and IS12553 head form impact tests. To evaluate the Head form impact performance on Interior components, Computer Aided Engineering (CAE) simulations are extensively used during the vehicle development. In order to predict failure of plastic components and snap joints which might lead to expose sharp edges, it is critical to model plastic material and snap joint.
Technical Paper

External Aerodynamic Drag Coefficient Prediction of Full Scale Passenger Car Based on Scale Model Assessment

2019-01-09
2019-26-0224
Aerodynamics performance evaluation of passenger cars is important during early vehicle development phase as it influences fuel economy, vehicle stability and drivability. Usually during initial styling phase, scale model is prepared and tested in wind tunnel to check aerodynamic performance like drag coefficient and these are used to predict aerodynamic performance of full scale model as testing on full scale model is costly and time consuming. To ensure its correctness, it is important to understand difference in physics from scale model to full scale model. In predicting full vehicle aerodynamics performance from scale model assessment; importance of Reynolds number, effect of geometric scaling on flow i.e. flow separation and wake zone change needs to be understood and addressed. This paper discusses about effect of scaling on aerodynamic flow behavior and drag.
Technical Paper

Fiber Reinforced Plastic Durability: Nonlinear Multi-Scale Modeling for Structural Part Life Predictions

2019-01-09
2019-26-0278
OEMs are seeking to develop vehicle light weighting strategies that will allow them to meet weight and fuel economy targets hence increasingly shifting their focus towards incorporating lighter material solutions at mass produced scales. Composites are seen by automotive manufacturers as the solution to lightweight vehicles without affecting their performance. More and more parts are made of short fiber reinforced plastics (SFRP) as well as continuous fiber composites. However, replacing metals by composites requires a new design approach and a clear understanding of the composite behavior. This paradigm however requires a dedicated tool for composite design in order to take into account the specific composite behavior. Traditional design tools are not able to state accurately the composite material behavior and sometime leading to use high safety of factors and lack of confidence in the design.
X