Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Development of Thermal Detection Device for Automotive Vehicles to Monitor Human Body Heat

2021-09-22
2021-26-0232
According to research studies, epidemics such as SARS, COVID-19 spread have caused huge negative impacts on population, health and the economy around the globe. The outbreak places a huge burden on international health systems that were already straining to address AIDS, tuberculosis, malaria, and a host of other conditions. Research has proven that incase infected person is not traced timely then the spread of infection in society will take the shape of large-scale community transmission. Most of the infections spread because they got unnoticed by the infected person. One part of the access checker scans is a person’s body temperature by measuring infrared radiation emitted by their skin. Fever screening by infrared thermal imaging has become more widespread following the SARS infection, and particularly during the pandemic H1N1 and COVID-19 outbreak. Skin temperature is measured without contact by monitoring the emitted infrared radiation.
Technical Paper

High Performance HVAC Component Development for EV Using 1-D System Simulation

2021-09-22
2021-26-0386
The current paper focuses on the compact HVAC component development for electric passenger vehicles running in countries where the external ambient conditions are harsh. Various previous studies have shown that the energy required for HVAC system alone is about 12-15 percent of the overall vehicle energy demands. Due to very high thermal loads, the Electric Vehicles operating in such countries will obviously fall under the higher HVAC energy consumption band. In addition to the energy demand, the cooling requirements like shorter pull-down time adds further challenges to the HVAC design. Another major challenge being faced by the EV manufacturers is the concerns due to range which has resulted in compact vehicles having less space for HVAC and other subsystem components. The current paper proposes an approach for replacing the conventional air-cooled condenser by liquid-cooled condenser. A liquid-cooled condenser will be much more compact than a conventional condenser.
Journal Article

Water Ingress Analysis and Splash Protection Evaluation for Vehicle Wading using Non-Classical CFD Simulation

2017-03-28
2017-01-1327
Physical testing of a vehicle wading through water is performed to gauge its capability to traverse through shallow to deep levels of water, wherein various vehicle performance parameters are observed, recorded and analysed. Jaguar Land Rover (JLR) has instigated and established a comprehensive CAE test procedure for assessing the same, which makes use of overset mesh (in a CFD environment) for a non-traditional approach to vehicle motion. The paper presents investigations made into the established wading physics, in order to optimise the splashing and water jet modelling. Large Scale Interface model was implemented instead of the previously standardised VOF-VOF fluid phase interaction model, and a comparison is made between the two. The implemented wheel rotation approach was scrutinised as well and appropriate inferences are drawn.
Technical Paper

Road Noise Prediction Assessment Using CAE Instead of Costly and Time Consuming Physical Tests

2020-04-14
2020-01-0492
Virtual Product Development (VPD) with a vision to eliminate prototype testing is the recent trend in the automotive industry. Reducing the total vehicle development period with optimized output has been the major advantage of this new trend, fueled by increasing competition and shorter product life cycle. In this regard, Computer Aided Engineering (CAE) has taken a more significant role than ever in the vehicle development programs. Prediction of road noise in passenger cars is one of the important attributes to NVH (Noise Vibration Harness) Simulations. In the present work, CAE - NVH simulation of road noise is carried out on the finite element model of the vehicle, eliminating the costly and laborious test procedures & the process of awaiting information from various departments. One of the major challenges in these simulations are generating the load inputs for the structure-borne road noise in a cost and time saving method with accuracy.
Technical Paper

Weight Optimisation of Dumper Body Structure Conserving Stiffness, Buckling and Dent Performance

2017-01-10
2017-26-0304
The entire commercial vehicle industry is moving towards weight reduction to leverage on the latest materials available to benefit in payload & fuel efficiency. General practice of weight reduction using high strength steel with reduced thickness in reference to Roark’s formula does not consider the stiffness & dent performance. While this helps to meet the targeted weight reduction keeping the stress levels within the acceptable limit, but with a penalty on stiffness & dent performance. The parameters of stiffener like thickness, section & pitching are very important while considering the Stiffness, bucking & dent performance of a dumper body. The Finite Element Model of subject dumper body has been studied in general particularly on impact of dent performance and is correlated with road load data to provide unique solution to the product. The impact of payload during loading of dumper is the major load case.
Technical Paper

A New Approach to Vehicle Design and Development Using “HYBRID MULE” for Platform Strategy

2013-09-24
2013-01-2360
In automotive design and development, there are different stages for product design. In this fast changing scenario product design, digital verification of design (CAE), physical validation of the product and launching of the same in short time is important in product development life cycle of any new generation vehicle. This paper proposes a new approach towards development of a green-field platform for commercial vehicles by improving reliability of CAE and thereby reducing the need for prototype testing and hence shortening development cycle and costs - we call it “Hybrid Mule”. This Hybrid Mule has complete design intent under-body and engine-house while upper-body is made of simple representative tubular space frame. FRP skin panels are attached to this space frame to create a safe environment for test-driver. FRP skin also provides early feel of styling in running condition and evaluates basic ergonomics and visibility.
Technical Paper

Design for Cabin Tilting System Employing Single Torsion Bar Using Taguchi Optimization Method

2012-09-24
2012-01-2032
Designing a cabin tilting system for Light Commercial Vehicles using a single torsion bar becomes challenging considering the operator safety and stringent design weight targets. Performance of a good tilting system entirely depends on cabin mass and location of centre of gravity with respect to (w.r.t) to tilting pivot point. Cabin Mass and COG location are very difficult to estimate while designing a new cabin as it is dependent on the maturation of all other cabin aggregates and also the accessories added by the customer. Incorporation design parameter changes like increasing cab tilting angle and increasing torsion bar length, in the later stages of product development, becomes expensive. The objective of this paper is to come up with an optimum design of a single torsion bar tilting employing “Taguchi optimization” for deciding the optimum levels of control factors, which ensures desired performance (i.e tilting effort vs.
Technical Paper

CAE Based Head Form Impact Simulations for Development of Vehicle Interiors

2019-01-09
2019-26-0237
The interior components of a passenger vehicle are designed to provide comfort and safety to its occupants. In the event of accident, vehicle interiors are primary source of injuries when occupants interact with them. Vehicle interiors consists of Instrument panel (IP), center console, seats and controls in front of seating position etc. Severity of the injuries depends on the energy dissipating characteristics, profiles, projections of different interior components. These are assessed by ECE R21 and IS12553 head form impact tests. To evaluate the Head form impact performance on Interior components, Computer Aided Engineering (CAE) simulations are extensively used during the vehicle development. In order to predict failure of plastic components and snap joints which might lead to expose sharp edges, it is critical to model plastic material and snap joint.
Technical Paper

Replacing Twin Electric Fan Radiator with Single Fan Radiator

2019-11-21
2019-28-2381
Downsizing is one of the crucial activities being performed by every automotive engineering organization. The main aim is to reduce - Weight, CO2 emissions and achieve cost benefit. All this is done without any compromise on performance requirement or rather with optimization of system performance. This paper evaluate one such optimization, where-in radiator assembly with two electric fan is targeted for downsizing for small commercial vehicle application. The present two fan radiator is redesigned with thinner core and use of single fan motor assembly. The performance of the heat exchanger is tested for similar conditions back to back on vehicle and optimized to get the balanced benefit in terms of weight, cooling performance and importantly cost. This all is done without any modification in vehicle interface components except electrical connector for fan. The side members and brackets design is also simplified to achieve maximum weight reduction.
Technical Paper

Development of Low Cost Lifesaving System for Automotive Vehicles during Road Accidents

2019-11-21
2019-28-2460
Vehicular accidents are life-threatening and result in fatal casualties in developing country such as India. According to estimates, traffic accidents kill more people in India than diseases like Cancer and AIDS. More than 150,000 people are killed every year in traffic accidents in India, which works out to 400 fatalities a day, far higher than developed auto markets like the U.S., which had logged about 40,000 deaths in 2016. The World Health Organization estimates road accidents cost most countries about 3 per cent of their gross domestic product. India being the fastest growing economy will be the world’s third-largest car market after China and the U.S. by 2020, according to automobile researchers. According to research study most of death cause due to not getting help on time to the injured person. Research has proven that if injured person is not found any option of help then they also lose the power to fight such critical situation due to psychological effect.
Technical Paper

Optimization of Compression Ratio for DI Diesel Engines for Better Fuel Economy

2019-11-21
2019-28-2431
Fuel economy is becoming one of the key parameter as it does not only account for the profitability of commercial vehicle owner but also has impact on environment. Fuel economy gets affected from several parameters of engine such as Peak firing pressure, reduction in parasitic losses, volumetric efficiency and thermal efficiency. Compression ratio is one of key design criteria which affects most of the above mentioned parameters, which not only improve fuel efficiency but also results in improvement of emission levels. This paper evaluates the optimization of Compression ratio and study its effect on Engine performance. The parameters investigated in this paper include combustion bowl volume in Piston and Cylinder head gasket thickness as these are major contributing factors affecting clearance volume and in turn the compression ratio of engine. Based on the calculation results, an optimum Compression Ratio for the engine is selected.
Technical Paper

ORVM Based Cabin Thermal Comfort - A Technological Approach

2023-09-14
2023-28-0042
Enriched ventilation and driver assistance systems which plays vital role in human thermal comfort and safety, are now necessities for the whole automotive sector. For faster cabin thermal comfort, air circulation around occupant’s body reveals higher cabin comfort index. In India natural and forced ventilation system is predominantly used in commercial vehicles as an economical solution for achieving interim cabin comfort over air conditioning system. Presently used forced ventilation system consist of electrically driven blower motor to remove stale air around human body which is adding alternator load and thus affects fuel economy. Remarkably, 22% of such auxiliary electrical load is taken by electrical components from engine generated power. In order to enhance cabin thermal comfort and conceivably reduce power usage, an effective air flow control system is need of hour.
Technical Paper

Implementation of IR Cut and Solar Green Glass to Optimize the Heat Load for Air Conditioning in Electric Buses

2023-09-14
2023-28-0006
Commercial electric vehicle air conditioning system keeps occupants comfortable, but at the expense of the energy used from the battery of vehicle. Passengers around the world are increasingly requesting buses with HVAC/AC capabilities. There is a need to optimise current air conditioning systems taking into account packaging, cost, and performance limits due to the rising demand for cooling and heating globally. Major elements contributing to heat ingress are traction motor, front firewall, windshield & side glasses and bus body parts. These elements contribute to the bus’s poor cooling and lack of passenger comfort. This topic refers to the reduction of the heat ingress through usage of different glass technology like IR Cut & solar green glass with different types of coating.
X