Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Effects of Various Engine Control System Malfunctions on Exhaust Emissions Levels During the EPA I/M 240 Cycle

1994-03-01
940448
Ensuring the reliable operation of the emissions control system is a critical factor in complying with increasingly stringent exhaust emissions standards. In spite of significant advances, the performance of available diagnostic and test equipment is still amenable to further improvement, especially as it pertains to the diagnosis of incipient and intermittent faults. This paper presents experimental results pertaining to the diagnosis of complete, partial and intermittent faults in various components of the engine emissions control system. The instrumentation used in the study permitted simultaneous and essentially continuous analysis of the exhaust gases and of engine variables. Tests were conducted using a section of the EPA urban driving cycle (I/M 240), simulated by means of a throttle/dynamometer controller.
Technical Paper

Methods for Internal Combustion Engine Feedback Control During Cold-Start

1995-02-01
950842
Legislation pertaining to automobile emissions has caused an increased focus on the cold-start performance of internal combustion engines. Of particular concern is the period of time before all available sensors become active. Present engine control strategies must rely on methods other than feedback control while these sensors are not active. Without feedback control during this critical period, engine emissions performance is not optimized. These conditions cause difficulty in performing comprehensive cold-start experiments. For these reasons, we have developed several methods for feedback control during cold-start to aid in laboratory investigations of engine emissions phenomena.
Technical Paper

IC Engine Fuel System Diagnostics Using Observer with Binary Sensor Measurement

1997-02-24
970031
In this paper, we propose an IC engine fuel system diagnostic algorithm based on a discrete-event nonlinear observer using the production oxygen sensor. A mean value engine model is used to describe the engine dynamics. A procedure for designing the discrete event based observer is presented and applied to estimate important engine variables using the measured binary oxygen sensor output. The estimated variables are then used to perform diagnostics of the fuel system of the IC engine. Experimental results on a multi-cylinder production engine are presented to demonstrate the effectiveness of the proposed method.
Technical Paper

Design of The Ohio State University Electric Race Car

1996-12-01
962511
The aim of this paper is to document a three year process of product development of the Formula Lightningtm electric race car constructed at the Ohio State University. Today interest in electric vehicles (EV's) is growing, due to the technological advances in recent years, but also in part due to recent legislation which mandates the introduction of ‘zero emission vehicles’ in California before the end of the century. The definition of ‘zero emission vehicle’ is: a vehicle which does not emit any pollutants during operation. Technologically, the only near term vehicle which meets this definition is an EV. One of the most difficult problems of electric racing is that the usable energy in a given set of batteries is not as easily determined as the amount of fuel in a tank. Also, the motor controllers may limit power output as battery voltage drops, further decreasing the amount of usable energy in a battery set.
X