Refine Your Search

Topic

Author

Search Results

Journal Article

Impact of Fuel Sprays on In-Cylinder Flow Length Scales in a Spark-Ignition Direct-Injection Engine

2017-03-28
2017-01-0618
The interaction of fuel sprays and in-cylinder flow in direct-injection engines is expected to alter kinetic energy and integral length scales at least during some portions of the engine cycle. High-speed particle image velocimetry was implemented in an optical four-valve, pent-roof spark-ignition direct-injection single-cylinder engine to quantify this effect. Non-firing motored engine tests were performed at 1300 RPM with and without fuel injection. Two fuel injection timings were investigated: injection in early intake stroke represents quasi-homogenous engine condition; and injection in mid compression stroke mimics the stratified combustion strategy. Two-dimensional crank angle resolved velocity fields were measured to examine the kinetic energy and integral length scale through critical portions of the engine cycle. Reynolds decomposition was applied on the obtained engine flow fields to extract the fluctuations as an indicator for the turbulent flow.
Journal Article

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2008-04-14
2008-01-1156
A task group within the SAE Automotive Corrosion and Protection (ACAP) Committee continues to pursue the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. The program is a cooperative effort with OEM, supplier, and consultant participation and is supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels, but correlations between laboratory test results and in-service performance have not been established. The primary objective of this project is to identify an accelerated laboratory test method that correlates with in-service performance. In this paper the type, extent, and chemical nature of cosmetic corrosion observed in the on-vehicle exposures are compared with those from some of the commonly used laboratory tests
Technical Paper

The Prospects of Using Alcohol-Based Fuels in Stratified-Charge Spark-Ignition Engines

2007-10-29
2007-01-4034
Near-term energy policy for ground transportation is likely to have a strong focus on both gains in efficiency as well as the use of alternate fuels; as both can reduce crude oil dependence and carbon loading on the environment. Stratified-charge spark-ignition direct-injection (SIDI) engines are capable of achieving significant gains in efficiency. In addition, these engines are likely to be run on alternative fuels. Specifically, lower alcohols such as ethanol and iso-butanol, which can be produced from renewable sources. SIDI engines, particularly the spray-guided variant, tend to be very sensitive to mixture preparation since fuel injection and ignition occur within a short time of each other. This close spacing is necessary to form a flammable mixture near the spark plug while maintaining an overall lean state in the combustion chamber. As a result, the physical properties of the fuel have a large effect on this process.
Technical Paper

Optimizing Gaseous Fuel-Air Mixing in Direct Injection Engines Using an RNG Based k-ε Model

1998-02-23
980135
Direct injection of natural gas under high pressure conditions has emerged as a promising option for improving engine fuel economy and emissions. However, since the gaseous injection technology is new, limited experience exists as to the optimum configuration of the injection system and associated combustion chamber design. The present study uses KIVA-3 based, multidimensional modeling to improve the understanding and assist the optimization of the gaseous injection process. Compared to standard k-ε models, a Renormalization Group Theory (RNG) based k-ε model [1] has been found to be in better agreement with experiments in predicting gaseous penetration histories for both free and confined jet configurations. Hence, this validated RNG model is adopted here to perform computations in realistic engine geometries.
Technical Paper

Misfire Detection Using a Dynamic Neural Network with Output Feedback

1998-02-23
980515
This paper presents a crankshaft speed fluctuation model based dynamic neural network misfire detection method to achieve high detection performance and compact network size. In this method, a dynamic neural network with output feedback is utilized to model an inverse system from the engine crankshaft speed signal to the firing event signal. The engine misfire detection is based on the output of the inverse system given the input of engine speed signal. Test results for a 4-cylinder engine show its promising capability of misfire detection even for the low sampling rate data under various engine operating conditions and misfire patterns.
Technical Paper

Estimation of Occupant Position from Probability Manifolds of Air Bag Fire-times

1998-02-23
980643
This paper outlines a method for estimating the probablistic nature of airbag crash sensor response and its effect on occupant position. Probability surfaces of airbag fire times are constructed for the impact velocities from 0 to 40 mph. These probability surfaces are obtained by using both frontal offset deformable barrier and frontal rigid barrier crash data. Another probability surface of displacement is constructed to estimate the occupant displacement time history before airbag deployment. This probability surface is constructed by using the initial occupant seating position data and the vehicle impact velocity and deceleration data. In addition, the probability of airbag firing at a given crash velocity is estimated from NASS-CDS, frontal offset and rigid barrier crash data.
Technical Paper

First and Second Law Analyses of a Naturally-Aspirated, Miller Cycle, SI Engine with Late Intake Valve Closure

1998-02-23
980889
A naturally-aspirated, Miller cycle, Spark-Ignition (SI) engine that controls output with variable intake valve closure is compared to a conventionally-throttled engine using computer simulation. Based on First and Second Law analyses, the two load control strategies are compared in detail through one thermodynamic cycle at light load conditions and over a wide range of loads at 2000 rpm. The Miller Cycle engine can use late intake valve closure (LIVC) to control indicated output down to 35% of the maximum, but requires supplemental throttling at lighter loads. The First Law analysis shows that the Miller cycle increases indicated thermal efficiency at light loads by as much as 6.3%, primarily due to reductions in pumping and compression work while heat transfer losses are comparable.
Technical Paper

Optimal Idle Speed Control of an Automotive Engine

1998-02-23
981059
An optimal idle speed control (ISC) system for an automotive engine is introduced in this paper. The system is based on a non-linear model including time delay. This model is linearized at the nominal operating point. The effect of the time delay on control is compensated by prediction. This methodology is applied to a Chrysler 2.0 liter 4-cylinder SOHC (Single Overhead Cam) engine. All of the unknown parameters of the model are identified by using the normal operating data from the test engine. Based on these identified parameters, an optimal controller was designed and implemented using a rapid prototyping system. Numerous experiments of the optimal controller were carried out at the Chrysler Technology Center in Auburn Hills, Michigan. The performance was compared to that of the existing controller. The results showed that the optimal controller has the capability to effectively control the engine idle speed under a variety of accessory loads and disturbances.
Technical Paper

Comparison of Diesel Oxidation Catalyst Performance on an Engine and a Gas Flow Reactor

2007-04-16
2007-01-0231
This paper analyzes and compares reactor and engine behavior of a diesel oxidation catalyst (DOC) in the presence of conventional diesel exhaust and low temperature premixed compression ignition (PCI) diesel exhaust. Surrogate exhaust mixtures of n-undecane (C11H24), ethene (C2H4), CO, O2, H2O, NO and N2 are defined for conventional and PCI combustion and used in the gas flow reactor tests. Both engine and reactor tests use a DOC containing platinum, palladium and a hydrocarbon storage component (zeolite). On both the engine and reactor, the composition of PCI exhaust increases light-off temperature relative to conventional combustion. However, while nominal conditions are similar, the catalyst behaves differently on the two experimental setups. The engine DOC shows higher initial apparent HC conversion efficiencies because the engine exhaust contains a higher fraction of trappable (i.e., high boiling point) HC.
Technical Paper

Algorithmic Maintenance of a Diesel Engine Electronic Fuel Feed Controller by Criterion of the Content of Soot in Exhaust Gas

2007-04-16
2007-01-0973
The feature of offered algorithm is that it allows, without record and analysis of the display diagram, to estimate a running cycle of a diesel engine parameters which characterize ecological and economic performances. The mathematical model described in report allows to determine connection of coefficient of filling, pressure and temperature of air boost, factor of excess of air with effectiveness ratio of combustion and contents of soot in exhaust gas and to take into account this connection at a choice initial data for control fuel feed or for elaboration of diesel engine dynamic model. The algorithm incorporated, for example, in the microcontroller of an electronic fuel feed controller allows analyzing the sensors data and theoretically determine of smoke amount in the exhaust gases for chosen cycle of fuel feed. The restriction of smoke is possible by criterion dD/dGT, where D - contents of soot in exhaust gas and GT - fuel cycle submission under the program-adaptive schema.
Technical Paper

Implementing Class A Multiplexing Functions with Industry Standard Components

1998-08-11
981896
Multiplexing systems have been used in automobiles for the past decade. The use of these systems has allowed manufacturers to reduce wiring harness size, eliminate redundant sensors, and achieve a level of communication not available before. While most applications of multiplexing have been inter-modular communication, there exist many more opportunities to utilize multiplexing. These opportunities include multiplexing various user activated/interacted switches, sensors, and actuators. Multiplexing of this type is defined by the SAE as a low speed sensor/actuator bus, or Class “A” bus. The Class “A” bus addresses issues, such as: the challenge of handling increasing wiring complexity, incorporating diagnostics and testability into automotive electronic designs, facilitating the use of new switch and actuator technologies, and allowing a higher degree of systems design flexibility.
Technical Paper

Global Regulatory Harmonization-One American Manufacturer's Perspective

1998-09-29
982266
This paper presents one American vehicle manufacturer's perspective on global regulatory harmonization, which is critically required for the future development and well being of the vehicle global market. The paper provides a brief overview of the past and present harmonization efforts and discusses some of the impediments in achieving agreements among different rulemaking bodies. Despite the often hampered goal of total harmonization, the paper submits that progress can be achieved with the reciprocal acceptance of functionally equivalent standards and other stop-gap measures to curb the ever spiraling requirements. The paper concludes on an optimistic note by citing some of the recent developments that bring the harmonization frontier closer to becoming a reality.
Technical Paper

Combustion System Development using Optical Spark Plug Probes

2008-04-14
2008-01-1074
In developing the features of a spark-ignition combustion chamber, optical combustion diagnostic technology was employed to understand the factors contributing to knock propensity of the combustion system. This optical combustion visualization equipment utilizes optical prisms located around the periphery of the spark plug shell to measure light intensity of combustion. By synchronizing light intensity and cylinder pressure measurements to crankshaft position, local tracking of combustion progression is accomplished. This method was used to track knock occurrences and to evaluate their controlling parameters within this combustion system. Cylinder head and piston top geometries were developed as a result of this combustion visualization. Recommendations derived from these studies were successfully used to achieve objectives of this engine development program which included improvements in torque and power output, fuel economy, and combustion stability.
Technical Paper

Design and Development of a Turbocharged E85 Engine for Formula SAE Racing

2008-06-23
2008-01-1774
A summary of the design and development process for a Formula SAE engine is described. The focus is on three fundamental elements on which the entire engine package is based. The first is engine layout and displacement, second is the fuel type, and third is the air induction method. These decisions lead to a design around a 4-cylinder 600cc motorcycle engine, utilizing a turbocharger and ethanol E-85 fuel. Concerns and constraints involved with vehicle integration are also highlighted. The final design was then tested on an engine dynamometer, and finally in the 2007 M-Racing FSAE racecar.
Technical Paper

An Innovative I-Bumper Concept for Improved Crashworthiness of Military and Commercial Vehicles

2008-04-14
2008-01-0512
The greatest demand facing the automotive industry has been to provide safer vehicles with high fuel efficiency at minimum cost. Current automotive vehicle structures have one fundamental handicap: a short crumple zone for crash energy absorption. This leaves limited room for further safety improvement, especially for high-speed crashes. Breakthrough technologies are needed. One potential breakthrough is to use active devices instead of conventional passive devices. An innovative inflatable bumper concept [1], called the “I-bumper,” is being developed by the authors for crashworthiness and safety of military and commercial vehicles. The proposed I-bumper has several active structural components, including a morphing mechanism, a movable bumper, two explosive airbags, and a morphing lattice structure with a locking mechanism that provides desired rigidity and energy absorption capability during a vehicular crash.
Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

Is Toluene a Suitable LIF Tracer for Fuel Film Measurements?

2004-03-08
2004-01-1355
Quantitative LIF measurements of liquid fuel films on the piston of direct-injected gasoline engines are difficult to achieve because generally these films are thin and the signal strength is low. Additionally, interference from scattered laser light or background signal can be substantial. The selection of a suitable fluorescence tracer and excitation wavelength plays an important role in the success of such measurements. We have investigated the possibility of using toluene as a tracer for fuel film measurements and compare it to the use of 3-pentanone. The fuel film dynamics in a motored engine at different engine speeds, temperatures and in-cylinder swirl levels is characterized and discussed.
Technical Paper

A Market-Weighted Description of Low-Beam Headlighting Patterns in Europe

2001-03-05
2001-01-0857
This study was designed to provide photometric information about current European low-beam headlamps. The sample included 20 low-beam headlamps manufactured for use on the 20 best-selling passenger vehicles for calendar year 1999 in 17 European countries. These 20 vehicles represent 47% of all vehicles sold in these countries. The lamps were purchased directly from vehicle dealerships, and photometered in 0.25° steps from 45° left to 45° right, and from 5° down to 7° up. The photometric information for each lamp was weighted by 1999 sales figures for the corresponding vehicle. The results are presented both in tabular form for the 25th-percentile, the median (50th-percentile), and the 75th-percentile luminous intensities, as well as in graphical form (for the median luminous intensities).
Technical Paper

Multi-Zone DI Diesel Spray Combustion Model for Cycle Simulation Studies of Engine Performance and Emissions

2001-03-05
2001-01-1246
A quasi-dimensional, multi-zone, direct injection (DI) diesel combustion model has been developed and implemented in a full cycle simulation of a turbocharged engine. The combustion model accounts for transient fuel spray evolution, fuel-air mixing, ignition, combustion and NO and soot pollutant formation. In the model, the fuel spray is divided into a number of zones, which are treated as open systems. While mass and energy equations are solved for each zone, a simplified momentum conservation equation is used to calculate the amount of air entrained into each zone. Details of the DI spray, combustion model and its implementation into the cycle simulation of Assanis and Heywood [1] are described in this paper. The model is validated with experimental data obtained in a constant volume chamber and engines. First, predictions of spray penetration and spray angle are validated against measurements in a pressurized constant volume chamber.
X