Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Injection Pressure Effects on the Flame Development in a Light-Duty Optical Diesel Engine

2015-04-14
2015-01-0791
The impact of fuel injection pressure on the development of diesel flames has been studied in a light-duty optical engine. Planer laser-induced fluorescence imaging of fuel (fuel-PLIF) and hydroxyl radicals (OH-PLIF) as well as line-of-sight integrated chemiluminescence imaging of cool-flame and OH* were performed for three different common-rail pressures including 70, 100, and 130 MPa. The injection timing and injected fuel mass were held constant resulting in earlier end of injection for higher injection pressure. The in-cylinder pressure was also measured to understand bulk-gas combustion conditions through the analysis of apparent heat release rate. From the cool-flame images, it is found that the low-temperature reaction starts to occur in the wall-interacting jet head region where the fuel-air mixing could be enhanced due to a turbulent ring-vortex formed during jet-wall interactions.
Technical Paper

Adaptive Optimal Management Strategy for Hybrid Vehicles Based on Pontryagin’s Minimum Principle

2020-04-14
2020-01-1191
The energy management strategies (EMS) for hybrid electric vehicles (HEV) have a great impact on the fuel economy (FE). The Pontryagin's minimum principle (PMP) has been proved to be a viable control strategy for HEV. The optimal costate of the PMP control can be determined by the given information of the driving conditions. Since the full knowledge of future driving conditions is not available, this paper proposed a dynamic optimization method for PMP costate without the prediction of the driving cycle. It is known that the lower fuel consumption the method yields, the more efficiently the engine works. The selection of costate is designed to make the engine work in the high efficiency range. Compared with the rule-based control, the proposed method by the principle of Hamiltonian, can make engine working points have more opportunities locating in the middle of high efficiency range, instead of on the boundary of high efficiency range.
Technical Paper

Investigation of the Impacts of Spark Plug Orientation on Combustion Stability under Lean SI Operation

2020-04-14
2020-01-1121
The increasingly stringent restrictions on vehicle emissions and fuel consumption are driving the development of gasoline engines towards lean combustion. Increasing ignition energy has been considered an effective way to achieve lean operation conditions. To further improve the lean limit of engine combustion, the influence of the spark plug orientation on the combustion stability under lean operation should be explored. In this investigation, the original machine spark plug orientation, 90 degrees clockwise rotation, and 180 degrees clockwise rotation are studied to analyze the impact of spark plug orientation. The combustion experiment was carried out under the condition of low excess air ratio of the original machine and high excess air ratio with a 450 mA high energy ignition.
Technical Paper

Transient Thermal Behavior of Dry Clutch under Non-Uniform Pressure Condition

2020-04-14
2020-01-1418
Accuracy of heat flux models is critical to clutch design in case of excessive temperatures due to large amounts of friction heat generated in the narrow space. Pressure distribution on the clutch friction interface is an important factor affecting heat flux distribution, thus affecting temperature distribution. In this paper, an experiment is conducted to obtain the pressure distribution for one typical dry clutch equipped with a set of diaphragm spring. Considering that the frictional interface is in contact, this study makes use of pressure sensitive film and acquires data based on image processing techniques. Then a polynomial mathematical model with dimensionless parameters is developed to fit the pressure distribution on the friction disc. After that, the proposed pressure model is applied to a thermal model based on finite element method. In addition, two conventional thermal models (i.e., uniform heat flux model and uniform pressure model), are implemented for comparison.
Journal Article

Study on Vehicle Stability Control by Using Model Predictive Controller and Tire-road Force Robust Optimal Allocation

2015-04-14
2015-01-1580
The vehicle chassis integrated control system can improve the stability of vehicles under extreme conditions using tire force allocation algorithm, in which, the nonlinearity and uncertainty of tire-road contact condition need to be taken into consideration. Thus, An MPC (Model Predictive Control) controller is designed to obtain the additional steering angle and the additional yaw moment. By using a robust optimal allocation algorithm, the additional yaw moment is allocated to the slip ratios of four wheels. An SMC (Sliding-Mode Control) controller is designed to maintain the desired slip ratio of each wheel. Finally, the control performance is verified in MATLAB-CarSim co-simulation environment with open-loop manoeuvers.
Journal Article

Nanostructure Analysis of In-flame Soot Particles under the Influence of Jet-Jet Interactions in a Light-Duty Diesel Engine

2015-09-06
2015-24-2444
Some soot particles emitted from common-rail diesel engines are so small that can penetrate deep into the human pulmonary system, causing serious health issues. The analysis of nano-scale internal structure of these soot particles sampled from the engine tailpipe has provided useful information about their reactivity and toxicity. However, the variations of carbon fringe structures during complex soot formation/oxidation processes occurring inside the engine cylinder are not fully understood. To fill this gap, this paper presents experimental methods for direct sampling and nanostructure analysis of in-flame soot particles in a working diesel engine. The soot particles are collected onto a lacey carbon-coated grid and then imaged in a high-resolution transmission electron microscope (HR-TEM). The HR-TEM images are post-processed using a Matlab-based code to obtain key nanostructure parameters such as carbon fringe length, fringe-to-fringe separation distance, and fringe tortuosity.
Journal Article

Analyzing the Cycle-to-Cycle Variations of Vapor and Liquid Phases of Evaporating SIDI Sprays via Proper Orthogonal Decomposition Technique

2015-09-01
2015-01-1901
In this study, the spray characteristics of three multi-hole injectors, namely a 2-hole injector, a 4-hole injector, and a 6-hole injector were investigated under various superheated conditions. Fuel pressure was kept constant at 10MPa. Fuel temperature varied from 20°C to 85°C, and back pressure ranged from 20kPa to 100kPa. Both liquid phase and vapor phase of the spray were investigated via laser induced exciplex fluorescence technique. Proper orthogonal decomposition technique was applied to analyze the cycle-to-cycle variations of the liquid phase and vapor phase of the fuel spray separately. Effects of fuel temperature, back pressure, superheated degree and nozzle number on spray variation were revealed. It shows that higher fuel temperature led to a more stable spray due to enhanced evaporation which eliminated the fluctuating structures along the spray periphery. Higher back pressure led to higher spray variation due to increased interaction between spray and ambient air.
Journal Article

Multi-Disciplinary Tolerance Optimization for Internal Combustion Engines Using Gaussian Process and Sequential MDO Method

2016-04-05
2016-01-0303
The internal combustion engine (ICE) is a typical complex multidisciplinary system which requires the support of precision design and manufacturing. To achieve a better performance of ICEs, tolerance assignment, or tolerance design, plays an important role. A novel multi-disciplinary tolerance design optimization problem considering two important disciplines of ICEs, the compression ratio and friction loss, is proposed and solved in this work, which provides a systematic procedure for the optimal determination of tolerances and overcomes the disadvantages of the traditional experience-based tolerance design. A bi-disciplinary analysis model is developed in this work to assist the problem solving, within which a model between the friction loss and tolerance is built based on the Gaussian Process using the corresponding simulation and experimental data.
Journal Article

Impact of Fuel Sprays on In-Cylinder Flow Length Scales in a Spark-Ignition Direct-Injection Engine

2017-03-28
2017-01-0618
The interaction of fuel sprays and in-cylinder flow in direct-injection engines is expected to alter kinetic energy and integral length scales at least during some portions of the engine cycle. High-speed particle image velocimetry was implemented in an optical four-valve, pent-roof spark-ignition direct-injection single-cylinder engine to quantify this effect. Non-firing motored engine tests were performed at 1300 RPM with and without fuel injection. Two fuel injection timings were investigated: injection in early intake stroke represents quasi-homogenous engine condition; and injection in mid compression stroke mimics the stratified combustion strategy. Two-dimensional crank angle resolved velocity fields were measured to examine the kinetic energy and integral length scale through critical portions of the engine cycle. Reynolds decomposition was applied on the obtained engine flow fields to extract the fluctuations as an indicator for the turbulent flow.
Journal Article

Multidisciplinary Optimization of Auto-Body Lightweight Design Using Hybrid Metamodeling Technique and Particle Swarm Optimizer

2018-04-03
2018-01-0583
Because of rising complexity during the automotive product development process, the number of disciplines to be concerned has been significantly increased. Multidisciplinary design optimization (MDO) methodology, which provides an opportunity to integrate each discipline and conduct compromise searching process, is investigated and introduced to achieve the best compromise solution for the automotive industry. To make a better application of MDO, the suitable coupling strategy of different disciplines and efficient optimization techniques for automotive design are studied in this article. Firstly, considering the characteristics of automotive load cases which include many shared variables but rare coupling variables, a multilevel MDO coupling strategy based on enhanced collaborative optimization (ECO) is studied to improve the computational efficiency of MDO problems.
Journal Article

Assessing the Importance of Radiative Heat Transfer for ECN Spray A Using the Transported PDF Method

2016-04-05
2016-01-0857
The importance of radiative heat transfer on the combustion and soot formation characteristics under nominal ECN Spray A conditions has been studied numerically. The liquid n-dodecane fuel is injected with 1500 bar fuel pressure into the constant volume chamber at different ambient conditions. Radiation from both gas-phase as well as soot particles has been included and assumed as gray. Three different solvers for the radiative transfer equation have been employed: the discrete ordinate method, the spherical-harmonics method and the optically thin assumption. The radiation models have been coupled with the transported probability density function method for turbulent reactive flows and soot, where unresolved turbulent fluctuations in temperature and composition are included and therefore capturing turbulence-chemistry-soot-radiation interactions. Results show that the gas-phase (mostly CO2 ad H2O species) has a higher contribution to the net radiation heat transfer compared to soot.
Journal Article

Experiment and Simulation Study on Unidirectional Carbon Fiber Composite Component under Dynamic Three-Point Bending Loading

2018-04-03
2018-01-0096
In the current work, unidirectional (UD) carbon fiber composite hatsection component with two different layups are studied under dynamic three-point bending loading. The experiments are performed at various impact velocities, and the effects of impactor velocity and layup on acceleration histories are compared. A macro model is established with LS-DYNA for a more detailed study. The simulation results show that the delamination plays an important role during dynamic three-point bending test. Based on the analysis with a high-speed camera, the sidewall of hatsection shows significant buckling rather than failure. Without considering the delamination, the current material model cannot capture the post-failure phenomenon correctly. The sidewall delamination is modeled by assumption of larger failure strain together with slim parameters, and the simulation results of different impact velocities and layups match the experimental results reasonably well.
Technical Paper

Influence of Port Water Injection on the Combustion Characteristics and Exhaust Emissions in a Spark-Ignition Direct-Injection Engine

2020-04-14
2020-01-0294
It is well known that engine downsizing is still the main energy-saving technology for spark-ignition direct-injection (SIDI) engine. However, with the continuous increase of the boosting ratio, the gasoline engine is often accompanied by the occurrence of knocking, which has the drawback to run the engine at retarded combustion phasing. Besides, in order to protect the turbine blades from being sintered by high exhaust temperature, the strategies of fuel enrichment are often taken to reduce the combustion temperature, which ultimately leads to a high level of particulate number emission. Therefore, to address the issues discussed above, the port water injection (PWI) techniques on a 1.2-L turbocharged, three-cylinder, SIDI engine were investigated. Measurements indicate that the optimization of spark timing has a significant impact on its performance.
Technical Paper

Combustion Characterization of Neat n-Butanol in an SI Engine

2020-04-14
2020-01-0334
Increasingly stringent emission standards have promoted the interest in alternate fuel sources. Because of the comparable energy density to the existing fossil fuels and renewable production, alcohol fuels may be a suitable replacement, or an additive to the gasoline/diesel fuels to meet the future emission standards with minimal modification to current engine geometry. In this research, the combustion characteristics of neat n-butanol are analyzed under spark ignition operation using a single cylinder SI engine. The fuel is injected into the intake manifold using a port-fuel injector. Two modes of charge dilution were used in this investigation to test the limits of stable engine operation, namely lean burn using excess fresh air and exhaust gas recirculation (EGR). The in-cylinder pressure measurement and subsequently, heat release analysis are used to investigate the combustion characteristics of the fuel under low load SI engine operation.
Journal Article

Sampling-Based RBDO Using Score Function with Re-Weighting Scheme

2013-04-08
2013-01-0377
Sampling-based methods are general but time consuming for solving a Reliability-Based Design Optimization (RBDO) problem. In order to alleviate the computation burden, score function together with the Monte Carlo method was used to compute the stochastic sensitivities of reliability functions. In literature, re-weighting schemes were shown to converge faster than the regular Monte Carlo method. In this paper, a reweighting scheme together with score function is employed to perform sampling-based stochastic sensitivity analysis to improve the computational efficiency and accuracy. An analytical example is used to show the advantages of the proposed method. Comparisons to the conventional methods are made and discussed. Two RBDO problems are solved to demonstrate the use of the proposed method.
Technical Paper

Gearshift Control Based on Fuzzy Logic of a Novel Two-Speed Transmission for Electric Vehicles

2020-04-14
2020-01-5004
Using highly efficient powertrain is one of the most important and effective approaches to increase the driving distance of electric vehicles (EVs). In this paper, a novel two-speed dual-clutch transmission (DCT) is proposed. The transmission is comprised of two traditional friction clutches and two-stage planetary gear sets. One clutch connects the input sun gear and the other connects the input carrier. The Simulink models including an electric motor and two-speed DCT are established. Gearshift schedule based on fuzzy logic which reflects the driver’s intensions is adopted to improve the dynamic and economic performance of the novel transmission. The simulation model is built using MATLAB/Simulink® to validate the effectiveness of the proposed gearshift schedule compared with the conventional two-parameter gearshift schedule. Simulation results show that both the dynamic and economic performance of the novel DCT for EVs are improved with the proposed fuzzy logic gearshift schedule.
Technical Paper

Vortex Development and Heat Release Enhancement in Diesel Spray Flame by Inversed-Delta Injection Rate Shaping Using TAIZAC Injector

2021-09-05
2021-24-0037
The enhancement of vortex development, fuel-air mixing and heat release in diesel spray flame by inversed-delta injection rate shaping, having been predicted via LES simulation with detailed chemical kinetics, is experimentally confirmed for the first time. Newly developed 3-injector TAIZAC (TAndem Injector Zapping ACtivation) injector realizing aggressive inversed-delta injection rate shaping was used for single-shot combustion experiments in a constant volume combustion vessel. Simultaneous high-speed (120,000fps) and high-resolution (1,280 x 704 pixels) laser schlieren and UV OH* chemiluminescence imaging combined with subsequent Flame Imaging Velocimetry (FIV) analysis was employed to elucidate the correlation between vortex development and enhanced heat release.
Journal Article

In-Flame Soot Sampling and Morphology Analysis in an Optical Spark-Ignition Direct-Injection (SIDI) Engine

2018-04-03
2018-01-1418
Stringent particulate emission regulations are applied to spark-ignition direct-injection (SIDI) engines, calling for a significant in-cylinder reduction of soot particles. To enhance fundamental knowledge of the soot formation and oxidation process inside the cylinder of the engine, a new in-flame particle sampling system has been developed and implemented in a working optical SIDI engine with a side-mounted, wall-guided injection system. Using the sampling probes installed on the piston top, the soot particles are directly sampled from the petrol flame for detailed analysis of particle size distribution, structure, and shape. At the probe tip, a transmission electron microscope (TEM) grid is stored for the soot collection via thermophoresis, which is imaged and post-processed for statistical analysis. Simultaneously, the flame development was recorded using two high-speed cameras to evidence the direct exposure of the sampling grids to the soot-laden diffusion flames and pool fires.
Journal Article

In-Flame Soot Sampling and Particle Analysis in a Diesel Engine

2013-04-08
2013-01-0912
In-flame soot sampling based on the thermophoresis of particles and subsequent transmission electron microscope (TEM) imaging has been conducted in a diesel engine to study size, shape and structure of soot particles within the reacting diesel jet. A direct TEM sampling is pursued, as opposed to exhaust sampling, to gain fundamental insight about the structure of soot during key formation and oxidation stages. The size and shape of soot particles aggregate structure with stretched chains of spherical-like primary particles is currently an unknown for engine soot modelling approaches. However, the in-flame sampling of soot particles in the engine poses significant challenges in order to extract meaningful data. In this paper, the engine modification to address the challenges of high-pressure sealing and avoiding interference with moving valves and piston are discussed in detail.
Journal Article

Effect of Injection Pressure on Transient Behaviour of Wall-Interacting Jet Flame Base in an Automotive-Size Diesel Engine

2013-10-14
2013-01-2536
Influence of the injection pressure on the temporal evolution of lifted jet flame base upon the bowl wall impingement has been studied in a small-bore optical diesel engine. Previous studies suggest that the jet-wall interaction causes re-entrainment of combustion products into the incoming jet, which shortens the lift-off length during the injection and thereby increasing downstream soot. After the end of injection, the flame base slowly moves downstream as the diminishing jet momentum results in reduced re-entrainment. How the injection pressure impacts this transient behaviour of the flame base is a main focus of the present study. Common-rail pressure was varied from 70 to 160 MPa at a fixed injection mass (10 mg per hole) and timing (7°CA bTDC).
X