Refine Your Search

Topic

Search Results

Technical Paper

3-Dimensional Numerical Simulation on CuO Nanofluids as Heat Transfer Medium for Diesel Engine Cooling System

2020-04-14
2020-01-1109
CuO-water nanofluids was utilized as heat transfer medium in the cooling system of the diesel engine. By using CFD-Fluent software, for 0.5%, 1%, 3% and 5% mass concentration of nanofluids, 3-dimensional numerical simulation about flow and heat transfer process in the cooling system of engine was actualized. According to stochastic particle tracking in turbulent flow, for solid-liquid two phase flow discrete phase, the moving track of nanoparticles was traced. By this way, for CuO nanoparticles of different mass concentration nanofliuds in the cooling jacket of diesel engine, the results of the concentration distribution, velocity distribution, internal energy variation, resident time, total heat transfer and variation of total pressure reduction between inlet and outlet were ascertained.
Technical Paper

Characteristics of Auto-Ignition for Lubricants and Lubricant/Gasoline Based on an Innovative Single Droplet Test System

2020-04-14
2020-01-1428
Due to the advantages of low weight, low emissions and good fuel economy, downsized turbocharged gasoline direct injection (GDI) engines are widely-applied nowadays. However, Low-Speed Pre-Ignition (LSPI) phenomenon observed in these engines restricts their improvement of performance. Some researchers have shown that auto-ignition of lubricant in the combustion chamber has a great effect on the LSPI frequency. To study the auto-ignition characteristics of lubricant, an innovative single droplet auto-ignition test system for lubricant and its mixture is designed and developed, with better accuracy and effectiveness. The experiments are carried out by hanging lubricant droplets on the thermocouple node under active thermo-atmosphere provided by a small “Dibble burner”. The auto-ignition process of lubricant droplets is recorded by a high-speed camera.
Journal Article

Investigation of Combustion Optimization Control Strategy for Stable Operation of Linear Internal Combustion Engine-Linear Generator Integrated System

2016-06-17
2016-01-9144
The linear internal combustion engine-linear generator integrated system (LICELGIS) is an innovative structure as a range-extender for the hybrid vehicles, which contains two opposed free piston engines and one linear generator between them. The LICELGIS is a promising power package due to its high power density and multi-fuel flexibility. In the combustion process of linear engines, the top dead center (TDC) position is not stable in different cycles, which significantly affects system operations. Otherwise, pistons move away from the TDC with high-speed because of the tremendous explosive force, which incurs the short residence time of pistons around the TDC and rapid decrease of in-cylinder temperature, pressure and the combustion efficiency. In order to address this problem, a scientific simulation model which includes dynamic and thermodynamic models, is established and a combustion optimization control strategy is proposed.
Journal Article

Lubrication Analysis of Floating Ring Bearings Considering Floating Ring Heat Transfer

2016-04-05
2016-01-0485
Turbochargers improve performance in internal combustion engines. Due to low production costs, TC assemblies are supported on floating ring bearings. In current lubrication analysis of floating ring bearing, inner and outer oil film are usually supposed to be adiabatic. The heat generated by frictional power is carried out by the lubricant flow. In reality, under real operating conditions, there existed heat transfer between the inner and outer film. In this paper, the lubrication performance of floating ring bearing when considering heat transfer between inner film and outer film is studied. The lubrication model of the floating ring is established and the heat transferred through the ring between the inner and outer film is calculated. The calculation results show that heat flow between the inner and outer film under different outer film eccentricity ratio and rotate ratio has a large difference.
Technical Paper

Research on Fast Filling Strategy of Large Capacity On-Board Hydrogen Storage Tank for Highway Passenger Cars

2020-04-14
2020-01-0855
In order to study the fast filling problem of large-capacity on-board hydrogen storage tank for highway passenger cars, a computational fluid dynamics (CFD) simulation model of 134L large-capacity hydrogen storage tank was established. By simulating different pre-cooling temperatures and mass flow rates, the temperature distribution and thermal transmission in the tank were observed. Due to the large ratio of length to diameter of the hydrogen tank, the temperature distribution is extremely uneven during the whole filling process, and the high temperature area is mainly concentrated in the tank tail. And the heat transfer between the gas and the tank wall is not obvious under the low and constant mass flow rate. The temperature rise process during the whole filling process under different mass flow conditions was simulated to satisfy the highest safe temperature limit.
Technical Paper

Effect of Hydrous Ethanol Combined with EGR on Performance of GDI Engine

2020-04-14
2020-01-0348
In recent years, particulate matters (PM) emissions from gasoline direct injection (GDI) engines have been gradually paid attention to, and the hydrous ethanol has a high oxygen content and a fast burning rate, which can effectively improve the combustion environment. In addition, Exhaust gas recirculation (EGR) can effectively reduce engine NOx emissions, and combining EGR technology with GDI engines is becoming a new research direction. In this study, the effects of hydrous ethanol gasoline blends on the combustion and emission characteristics of GDI engines are analyzed through bench test. The results show that the increase of the proportion of hydrous ethanol can accelerate the burning rate, shorten the combustion duration by 7°crank angle (CA), advance the peak moment of in-cylinder pressure and rate of heat release (RoHR) and improve the combustion efficiency. The hydrous ethanol gasoline blends can effectively improve the gaseous and PM emissions of the GDI engine.
Technical Paper

Simulation and Parametric Analysis of Battery Thermal Management System Using Phase Change Material

2020-04-14
2020-01-0866
The thermophysical parameters and amount of composite phase change materials (PCMs) have decisive influence on the thermal control effects of thermal management systems (TMSs). At the same time, the various thermophysical parameters of the composite PCM are interrelated. For example, increasing the thermal conductivity is bound to mean a decrease in the latent heat of phase change, so a balance needs to be achieved between these parameters. In this paper, a prismatic LiFePO4 battery cell cooled by composite PCM is comprehensively analyzed by changing the phase change temperature, thermal conductivity and amount of composite PCM. The influence of the composite PCM parameters on the cooling and temperature homogenization effect of the TMS is analyzed. which can give useful guide to the preparation of composite PCMs and design of the heat transfer enhancement methods for TMSs.
Technical Paper

Energy Enhanced Adaptive Spark Ignition for Lean Combustion Initiation

2020-04-14
2020-01-0841
For internal combustion engine systems, lean and diluted combustion is an important technology applied for fuel efficiency improvement. Because of the thermodynamic boundary conditions and the presence of in-cylinder flow, the development of a well-sustained flame kernel for lean combustion is a challenging task. Reliable spark discharge with the addition of enhanced delivered energy is thus needed at certain time durations to achieve successful combustion initiation of the lean air-fuel mixture. For a conventional transistor coil ignition system, only limited amount of energy is stored in the ignition coil. Therefore, both the energy of the spark discharge and the duration of the spark discharge are bounded. To break through the energy limit of the conventional transistor coil ignition system, in this work, an adaptive spark ignition system is introduced. The system has the ability to reconstruct the conductive ion channels whenever it is interrupted during the spark discharge.
Technical Paper

Effect of Coflow Temperature on the Characteristics of Diesel Spray Flames and its Transient HC Distribution under Atmospheric Conditions

2007-10-29
2007-01-4028
A Controllable Active Thermo-Atmosphere (CATA) Combustor enables the investigation of stabilization mechanisms in an environment that decouples the turbulent chemical kinetics from the complex recirculating flow. Previous studies on combustion of the low-pressure fuel jets in the Controllable Active Thermo-Atmosphere (CATA) showed non-linear effect of coflow temperature on autoignition delay and the randomness of autoignition sites. In this work, a diesel spray is injected into the CATA with the injection pressure at 20MPa from a single-hole injector and the autoignition and combustion process of the spray is recorded by a high-speed camera video. The multipoint autoignition of diesel spray is observed in the CATA and the subsequent combustion process is analyzed. The results show that autoignition phenomenon plays an important role in the stabilization of the lifted flames of diesel spray under low coflow temperature.
Technical Paper

Effect of Piston Crevice on Transient HC Emissions of First Firing Cycle at Cold Start on LPG SI Engine

2007-10-29
2007-01-4015
By changing the top-land radial clearance, this paper presents the effect of the piston crevice on the transient HC emissions of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle. At the same time, the transient cylinder pressure and instantaneous crankshaft speed of the engine were measured and recorded. The results show that increasing 50% crevice volume leads to 25% increase of HC emissions in the lean region and 18% increase of HC emissions in the rich region, however, the 50% increase of crevice volume contributes to 32% decease of HC emissions in the stable combustion region. For LPG SI engine, the HC emissions of the first firing cycle during cold start are relatively low in a wide range of the excess air ratio.
Technical Paper

A Study of Crevice HC Mechanism Based on the Transient HC Test Data and the Double Zone Combustion Model

2008-06-23
2008-01-1652
The effectiveness of after-treatment systems depends on the exhaust gas temperature, which is low during cold-start. As a result, Euro III, Euro IV and FTP75 require that the emissions tests include exhaust from the beginning of cold start. It is proved that 50%∼80% of HC and CO emissions are emitted during the cold start and the amount of unburned fuel from the crevices during starting is much higher than that under warmed engine conditions. The piston crevices is the most part of combustion chamber crevices, and results of mathematical simulations show that the piston crevice contribution to HC emissions is expected to increase during cold engine operation. Based on the transient HC test data and the double zone combustion model, this paper presents the study of the crevice HC Mechanism of the first firing cycle at cold start on an LPG SI Engine. A fast-response flame ionization detector (FFID) was employed to measure transient HC emissions of the first firing cycle.
Technical Paper

Design and Simulation of Serial Hybrid Electric Moped Powertrain

2008-06-23
2008-01-1567
According to the requirements of two-wheel vehicle's future market and the characteristic of urban road conditions in China, the advantages and disadvantages of three basic configurations for the Hybrid Electric Vehicle are compared, finally, the serial hybrid configuration is chosen to be applied to hybrid Electric Moped solution. The selection principle of main components of this hybrid powertrain system includes ICE, generator, battery and hub motor, and the optimal match for performance parameters of these components are introduced in this paper. Then, a hybrid system model is established based on AVL-CRUISE. The simulations of fuel efficiency and exhaust emissions for both serial hybrid moped and conventional motorcycle is offered.
Technical Paper

Elementary Investigation into Road Simulation Experiment of Powertrain and Components of Fuel Cell Passenger Car

2008-06-23
2008-01-1585
It is very important to investigate how road irregularity excitation will affect the durability, reliability, and performance degradation of fuel cell vehicle powertrain and its key components, including the electric motor, power control unit, power battery package and fuel cell engine system. There are very few published literatures in this research area. In this paper, an elementary but integrated experimental work is described, including the real road load sample on proving ground, road load reproduction on vibration test rig, total vehicle road simulation test and key components vibration tests. Remote parameter control technology is adopted to reproduce the real road load on road simulator and six-degree-of-freedom vibration table, which is used respectively for total vehicle and components vibration tests.
Technical Paper

Investigation of Radiation and Conjugate Heat Transfers for Vehicle Underbody

2008-06-23
2008-01-1819
A computational study was conducted in order to characterize the heat transfers in a sedan vehicle underbody and the exhaust system. A steady-state analysis with consideration for both the radiation and conjugate heat transfers was undertaken using the High-Reynolds formulation of the k-epsilon turbulence model with standard wall function and the DO model for the radiation heat transfer. All three mechanisms of heat transfer, i.e., convection, conduction, and radiation, were included in the analysis. The convective heat transfer due to turbulent fluid motion was modeled with the assumption of constant turbulent Prandtl number; and heat conduction was solved directly for both fluid and solid.
Technical Paper

Study on Improving the Fuel Economy of the Engine on EP Energy-Saving Vehicle

2008-06-23
2008-01-1780
“Soichiro Honda Cup, Honda Econo-Power Competition”, is an annual international energy-saving competition which is hosted by Honda Motor Co., Ltd. Till now it has been held 27 sessions. The aims of the EP project are: promoting the development of environmental protection, making full use of limit earth resources, challenging the fuel consumption limitation of vehicle. Tongji University's students' team has participated in the competition for seven consecutive times. In order to minimize the fuel consumption of the EP energy-saving vehicle, this paper focuses on the technical methods of improving the fuel economy of the engine. Firstly, the optimization of the carburetor. Secondly, for the purpose of improving combustion efficiency, researches on dual spark plug and compression ratio are done.
Technical Paper

Study on EP Energy-Saving Vehicle

2008-06-23
2008-01-1775
The price of fossil fuels and the increasing inexorable energy crisis have become vital issues for everyone. Tongji University EconoPower Racing Team was established to participate in the “Honda EconoPower Cup” annually. Every contestant in the competition must finish a certain distance in the fixed time, with the gasoline supplied by the committee. After that the committee will measure the fuel consumption of every team and calculate the distance per liter fuel (the farther the better) to determine the champion. In order to enhance the EP vehicle's achievement we've made some improvements, such as framework, body, engine's optimization and so on. In this passage we mainly state some details of our research approaches in framework, steering, transmission, shape and driving strategy. The main technologies were: friction reduction, lightweight, enhancement of power train efficiency, tire selection and driving strategy.
Technical Paper

Fuel Injection Optimization during Engine Quick Start by Means of Cycle-by-Cycle Control Strategy for HEV Application

2009-11-02
2009-01-2718
Engine-off strategy are popular used in hybrid electric vehicles (HEV) for fuel saving. The engine of an HEV will start and stop frequently according to the road condition. In order to obtain excellent fuel economy and emissions performance, the fuel injection during engine quick start should be optimized. In this paper, the characteristic of mixture formation and the HC emissions at the first 5 cycles which contribute the most HCs were investigated. After the analysis of mixture preparation during start process, the HC emissions during engine quick start were optimized by means of cycle-by-cycle fuel injection control strategy. The fuel mixture concentration during start-up process fluctuates more dramatically under hot start condition. Typically, the mixture at 4th and 5th cycle is over-riched. Based on the original engine calibration, the fuel injection at the initial 5 cycles was optimized respectively.
Technical Paper

Multi-Body Dynamic Simulation and Fatigue Analysis of the Unique Crank - train for a Creative Two-stoke Opposed Piston Diesel Engine

2016-10-17
2016-01-2332
For an innovative opposed-piston diesel engine (OPE) with two-stroke operation mode, it attracted even more attentions than ever in some developed countries all around the world, attributed to the unique advantages of higher power density that conducive to downsize IC engine, as well as the potential of further reducing fuel consumption for outstanding thermal efficiency. To achieve fast practical application and ensure the feasibility in concept design stage, the performance characteristic of OPE crankshaft system was investigated, and thus a theoretical analytic model of crankshaft system in an OP2S (Opposed-piston two stroke) engine was established. The effects of all structural design variables on averaged output torque of OPE crankshaft were analyzed, respectively. It was found that the initial crank angle difference between inner crank web and outer crank web was considered as a most critical contributor to boost the averaged torque output than other design variables.
Technical Paper

Research on Effect of Wastegate Diameter on Turbocharged Gasoline Engine Perfor mance

2016-04-05
2016-01-1028
Boosting and downsizing is the trend of future gasoline engine technology. For the turbocharged engines, the actuation of intake boosting pressure is very important to the performance output. In this paper, a GT-Power simulation model is built based on a 1.5 L turbocharged gasoline engine as the research object. The accuracy of model has been verified through the bench test data. Then it is conducted with numerical simulation to analyze the effect of wastegate diameter on the engine performance, including power output and fuel economy. Mainly the wastegate diameter is optimized under full engine operating conditions. Finally an optimal MAP of wastegate diameter is drawn out through interpolation method. By the transmission relationship between wastegate and actuator, a wastegate control MAP for electric actuated wastegate can be obtained.
Technical Paper

Gear Rattle Prediction Based on Compliance and Deformation of Gear Contact Points

2016-04-05
2016-01-1094
Generally, the gear rattle noise prediction models are composed of the mass and stiffness elements. The proposals are about the gear inertia or backlash and the shaft inertia or stiffness, but there are many detailed designs in the same inertia, stiffness or backlash conditions. Therefore, these proposals can’t guide detailed designs. These models only investigate the rattle in the rotating degree, and ignore rattle contribution in the radical and axial directions. Those prediction models only consider one or several factors which affect the rattle noise performance. It is difficult to predict the influence of individual factor and multi-factors coupling on the gear rattle noise in a rattle simulation model.
X