Refine Your Search

Topic

Affiliation

Search Results

Journal Article

A New Method for Bus Drivers' Economic Efficiency Assessment

2015-09-29
2015-01-2843
Transport vehicles consume a large amount of fuel with low efficiency, which is significantly affected by drivers' behaviors. An assessment system of eco-driving pattern for buses could identify the deficiencies of driver operation as well as assist transportation enterprises in driver management. This paper proposes an assessment method regarding drivers' economic efficiency, considering driving conditions. To this end, assessment indexes are extracted from driving economy theories and ranked according to their effect on fuel consumption, derived from a database of 135 buses using multiple regression. A layered structure of assessment indexes is developed with application of AHP, and the weight of each index is estimated. The driving pattern score could be calculated with these weights.
Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Journal Article

Experimental Investigation of Homogeneous Charge Induced Ignition (HCII) with Low-Pressure Injection to Reduce PM Emissions in a Heavy-Duty Engine

2016-04-05
2016-01-0775
Homogeneous Charge Induced Ignition (HCII) combustion utilizes a port injection of high-volatile fuel to form a homogeneous charge and a direct injection of high ignitable fuel near the Top Dead Center (TDC) to trigger combustion. Compared to Conventional Diesel Combustion (CDC) with high injection pressures, HCII has the potential to achieve diesel-like thermal efficiency with significant reductions in NOx and PM emissions with relatively low-pressure injections, which would benefit the engine cost saving remarkably. In the first part of current investigation, experiments were conducted at medium load with single diesel injection strategy. HCII exhibited great potential of using low injection pressures to achieve low soot emissions. But the engine load for HCII was limited by high heat release rate. Thus, in the second and third part, experiments were performed at high and low load with double diesel injection strategy.
Technical Paper

Cooperative Ramp Merging Control for Connected and Automated Vehicles

2020-02-24
2020-01-5020
Traffic congestions are increasingly severe in urban areas, especially at the merging areas of the ramps and the arterial roads. Because of the complex conflict relationship of the vehicles in ramps and arterial roads in terms of time-spatial constraints, it is challenging to coordinate the motion of these vehicles, which may easily cause congestions at the merging areas. The connected and automated vehicles (CAVs) provides potential opportunities to solve this problem. A centralized merging control method for CAVs is proposed in this paper, which can organize the traffic movements in merging areas efficiently and safely. In this method, the merging control model is built to formulate the vehicle coordination problem in merging areas, which is then transformed to the discrete nonlinear optimization form. A simulation model is built to verify the proposed method.
Technical Paper

An Improved Probabilistic Threat Assessment Method for Intelligent Vehicles in Critical Rear-End Situations

2020-04-14
2020-01-0698
Threat assessment (TA) method is vital in the decision-making process of intelligent vehicles (IVs), especially for ADAS systems. In the research of TA, the probabilistic threat assessment (PTA) method is acting an increasing role, which can reduce the uncertainties of driver’s maneuvers. However, the driver behavior model (DBM) used in present PTA methods was mainly constructed by limited data or simple functions, which is not entirely reasonable and may affect the performance of the TA process. This work aims to utilize crash data extracted from Event Data Recorder (EDR) to establish more accurate DBM and improve the current PTA method in rear-end situations. EDR data with responsive maneuvers were firstly collected, which were then employed to construct the initial DBM (I-DBM) model by using the multivariate Gaussian distribution (MGD) framework. Besides, the model was further subdivided into six parts by two important risk indicators, Time-to-collision (TTC) and velocity.
Technical Paper

Instantaneous PLII and OH* Chemiluminescence Study on Wide Distillation Fuels, PODEn and Ethanol Blends in a Constant Volume Vessel

2020-04-14
2020-01-0340
The combustion characteristics and soot emissions of three types of fuels were studied in a high pressure and temperature vessel. In order to achieve better volatility, proper cetane number and high oxygen content, the newly designed WDEP fuel was proposed and investigated. It is composed of wide distillation fuel (WD), PODE3-6 mixture (PODEn) and ethanol. For comparison, the test on WD and the mixture of PODEn-ethanol (EP) are also conducted. OH* chemiluminescence during the combustion was measured and instantaneous PLII was also applied to reveal the soot distribution. Abel transformation was adopted to calculate the total soot of axisymmetric flame. The results show that WDEP has similar ignition delays and flame lift-off lengths to those of WD at 870-920 K. But the initial ignition locations of WDEP flame in different cycles were more concentrated, particularly under the condition of low oxygen atmosphere.
Technical Paper

Morphing an Existing Open Source Human Body Model into a Personalized Model for Seating Discomfort Investigation

2020-04-14
2020-01-0874
Computational finite element (FE) human body models (HBM) are used to estimate internal loads and soft tissue deformation, which cannot be easily measured experimentally, for seating discomfort investigation. However, most existing models only represent a limited number of body sizes and postures and cannot be easily personalized and repositioned, which limits their applicability. In recent years, an open source software package has been developed within the European project PIPER (available at www.PIPER-project.org) to help personalize and to position an HBM used for crash injury simulation. In addition to the personalizing and positioning tools, a child model has also been developed and is also now available. The present study aims to derive an adult male HBM to study seating discomfort from the PIPER Child model using the PIPER personalizing tools and information with external body shape and partial internal skeleton of an adult as targets.
Journal Article

Influencing Factors of Contact Force Distribution in Pedestrian Upper Legform Impact with Vehicle Front-End

2012-04-16
2012-01-0272
Pedestrian upper leg impact protection is a challenging requirement in the Euro NCAP assessment. In upper legform to bonnet leading edge tests, the legform impact force, the legform intrusion and the injury parameters (impact force and bending moment measured on the upper legform) are highly related to design of vehicle front-end styling and structure, as well as clearance underneath bonnet leading edge. In the course of impact, the contact area variation has significant influence on the stress distribution and consequently the force and the bending moment on the upper legform. Using finite element simulations of upper legform impact with a typical sedan, the deformation of the legform and the vehicle structure, and the variation of the contact force distribution are characterized and analyzed.
Journal Article

Investigation on Transient Emissions of a Turbocharged Diesel Engine Fuelled by HVO Blends

2013-04-08
2013-01-1307
Transient emissions of a turbocharged three-litre V6 diesel engine fuelled by hydrogenated vegetable oil (HVO) blends were experimentally investigated and compared with transient emissions of diesel as reference. The transient emissions measurements were made by highly-dynamic emissions instrumentations including Cambustion HFR500, CLD500 and DMS500 particulate analyzer. The HVO blends used in this study were 30% and 60% of HVO in diesel by volume. The transient conditions were simulated by load increases over 5 s, 10 s and 20 s durations at a constant engine speed. The particulate, NO, HC concentrations were measured to investigate the mechanism of emission formation under such transient schedules. The results showed that as the load increased, NO concentrations initially had a small drop before dramatically increasing for all the fuels investigated which can be associated with the turbocharger lag during the load transient.
Technical Paper

Safety Development Trend of the Intelligent and Connected Vehicle

2020-04-14
2020-01-0085
Automotive safety is always the focus of consumers, the selling point of products, the focus of technology. In order to achieve automatic driving, interconnection with the outside world, human-automatic system interaction, the security connotation of intelligent and connected vehicles (ICV) changes: information security is the basis of its security. Functional safety ensures that the system is operating properly. Behavioral safety guarantees a secure interaction between people and vehicles. Passive security should not be weakened, but should be strengthened based on new constraints. In terms of information safety, the threshold for attacking cloud, pipe, and vehicle information should be raised to ensure that ICV system does not fail due to malicious attacks. The cloud is divided into three cloud platforms according to functions: ICVs private cloud, TSP cloud, public cloud.
Journal Article

Cold and Warm Start Characteristics using HVO and RME Blends in a V6 Diesel Engine

2013-04-08
2013-01-1306
The first several cycles determine the quality of an engine start. Low temperatures and air/fuel ratio cause incomplete combustion of the fuel. This can lead to dramatic increases in HC and PM emissions. In order to meet Euro V legislation requirements which have stricter cold start emission levels, it is critical to study the characteristics of cold and warm starting of engines in order to develop an optimized operation. The NO and THC emissions were measured by fast CLD and Fast FID gas analyzers respectively and PM in both nucleation and accumulation modes were measured by DMS500. The coolant temperature was controlled in order to guarantee the experiment repeatability. The results show that at cold start using RME60 produced higher NO and lower THC than the other tested fuels while combustion of HVO60 produced a similar level of NO but lower THC compared with mineral diesel. Meanwhile, the nucleation mode of mineral diesel was similar to RME60 but higher than HVO60.
Journal Article

Transient Emissions Characteristics of a Turbocharged Engine Fuelled by Biodiesel Blends

2013-04-08
2013-01-1302
The effects of different biodiesel blends on engine-out emissions under various transient conditions were investigated in this study using fast response diagnostic equipment. The experimental work was conducted on a modern 3.0 L, V6 high pressure common rail diesel engine fuelled with mineral diesel (B0) and three different blends of rapeseed methyl esters (RME) (B30, B60, B100 by volume) without any modifications of engine parameters. DMS500, Fast FID and Fast CLD were used to measure particulate matter (PM), total hydrocarbon (THC) and nitrogen monoxide (NO) respectively. The tests were conducted during a 12 seconds period with two tests in which load and speed were changed simultaneously and one test with only load changing. The results show that as biodiesel blend ratio increased, total particle number (PN) and THC were decreased whereas NO was increased for all the three transient conditions.
Technical Paper

A Stochastic Energy Management Strategy for Fuel Cell Hybrid Vehicles

2007-01-23
2007-01-0011
An energy management strategy is needed to optimally allocate the driver's power demands to different power sources in the fuel cell hybrid vehicles. The driver's power demand is modelled as a Markov process in which the transition probabilities are estimated on the basis of the observed sample paths. The Markov Decision Process (MDP) theory is applied to design a stochastic energy management strategy for fuel cell hybrid vehicles. This obtained control strategy was then tested on a real time simulation platform of the fuel cell hybrid vehicles. In comparison to the other 3 strategies, the constant bus voltage strategy, the static optimization strategy and the dynamic programming strategy, simulations in the Beijing bus driving cycle demonstrate that the obtained stochastic energy management strategy can achieve better performance in fuel economy in the same demand of dynamic.
Technical Paper

Mechanical Structure Analysis and Kinematic Simulation of the Satellite Star Gear Continuously Variable Transmission System

2008-06-23
2008-01-1688
Nowadays more and more in-depth study and continuous investigation is being carried out in the continuously variable transmission (CVT) field. A good continuously variable ratio changing action would greatly improve the performance of the transmission and offer a high fuel economy. So it would save energy and protect environment, furthermore it would reduce the working intensity and demands of driving skill on the driver. Therefore, a high efficiency and good performance continuously variable transmission (CVT) is urgently needed. This paper presents a new Satellite Star Gear (SSG) Continuously Variable Transmission System. It was created based on the Pulse Stepless Transmission with some improvements on the overrunning clutch, stepless speed change device etc. This paper introduces the basic mechanical structure and kinematical principle of a double eccentricity stepless speed change device, overrunning clutch and the whole mechanism (SSG).
Technical Paper

Analysis of Causes of Rear-end Conflicts Using Naturalistic Driving Data Collected by Video Drive Recorders

2008-04-14
2008-01-0522
Studying traffic accidents by using naturalistic driving data has become increasingly appealing for its potential benefits in improving road safety. This paper presents findings from a field test which has been conducted on 50 taxis in the urban areas of Beijing for 10 months using Video Drive Recorders (VDRs). The VDR used in this study could record the information of vehicle front view video, vehicle states, as well as driver operations immediately before and after an event. The drivers were given no specific instructions during the test, and the instrumentation for data collection was unobtrusive. Important safety-relevant parameters, such as vehicle speed, pre-event maneuver, time headway, time-to-collision, and driver reaction time, were calculated with precision. Based on these parameters, an analysis into features and causes of rear-end conflicts is performed.
Technical Paper

Application of Narrow Cone Angle Injectors to Achieve Advanced Compression Ignition on a Mass-Production Diesel Engine - Control Strategy and Engine Performance Evaluation

2009-11-02
2009-01-2700
Advanced compression ignition combustion system which reduces simultaneously both nitride oxides (NOx) and particulate matter (PM) is a promising approach to meet future emission regulations. In order to achieve advanced compression ignition, flexible fuel injection is required for ultra-early and post-TDC injections, which conventional injector fails to accomplish due to wall-wetting effect. In this work, special injectors with the spray angle of 60 degree are applied on a 4 cylinder mass-production diesel engine without modification of the engine configuration. For application-oriented study, sweep experiments of injection timings and durations, fuel injection pressure and the boost pressure are carried out to investigate the relationships between the control parameters and the engine performance. Model based calibration and real application tests validate the maximum applicable operation range of maximum speed of 2200 RPM and IMEP of 8.0 bar.
Technical Paper

Development of a Legform Impactor with 4-DOF Knee-Joint for Pedestrian Safety Assessment in Omni-Direction Impacts

2011-04-12
2011-01-0085
The issue of car-to-pedestrian impact safety has received more and more attention. For leg protection, a legform impactor with 2 degrees-of-freedom (DOF) proposed by EEVC is required in current regulations for injury assessment, and the Japan Automobile Manufacturers Association Inc. (JAMA) and Japan Automobile Research Institute (JARI) have developed a more biofidelic pedestrian legform since 2000. However, studies show that those existing legforms may not be able to cover some car-to-pedestrian impact situations. This paper documents the development of a new pedestrian legform with 4 DOFs at the knee-joint. It can better represent the kinematics characteristics of human knee-joint, especially under loading conditions in omni-direction impacts. The design challenge is to solve the packaging problem, including design of the knee-joint mechanisms and layout of all the sensors in a limited space of the legform.
Technical Paper

Analysis of Energy Consumption on Typical Main Cylinder Booster Based Brake-by-Wire System

2016-09-18
2016-01-1955
The traditional vacuum booster is gradually replaced by Brake-by-Wire system (BBW) in modern passenger car, especially Electric Vehicle (EV). Some mechanical and hydraulic components are replaced by electronic components in Brake-by-Wire system. Using BBW system in modern passenger vehicles can not only improve the automotive safety performance, reliability and stability, but also promote vehicle maneuverability, comfort, fuel economy and environmental protection. Although vehicle's braking performance is greatly improved by using BBW, the system will inevitably consume some energy of the vehicle power supply, thus introducing unexpected drawback in comparison with the traditional vacuum assist braking system, since it doesn't need any electric power. Therefore, the analysis of energy consumption on typical main cylinder booster based BBW system under typical driving cycles will contribute to advanced design of current advanced braking system.
Technical Paper

Hierarchical Framework for Adaptive Cruise Control with Model Predictive Control Method

2017-09-23
2017-01-1963
Adaptive cruise control (ACC), as one of the advanced driver assistance systems (ADAS), has become increasingly popular in improving both driving safety and comfort. Since the objectives of ACC can be multi-dimensional, and often conflict with each other, it is a challenging task in its control design. The research presented in this paper takes ACC control design as a constrained optimization problem with multiple objectives. A hierarchical framework for ACC control is introduced, aimed to achieve optimal performance on driving safety and comfort, speed and/or distance tracking, and fuel economy whenever possible. Under the hierarchical framework, the operational mode is determined in the upper layer, in which a model predictive control (MPC) based spacing controller is employed to deal with the multiple control objectives. On the other hand, the lower layer is for actuator control, such as braking and driving control for vehicle longitudinal dynamics.
Technical Paper

Autonomous Emergency Braking Control Based on Hierarchical Strategy Using Integrated-Electro-Hydraulic Brake System

2017-09-23
2017-01-1964
Highway traffic safety has been the most serious problem in current society, statistics show that about 70% to 90% of accidents are caused by driver operational errors. The autonomous emergency braking (AEB) is one of important vehicle intelligent safety technologies to avoid or mitigate collision. The AEB system applies the vehicle brakes when a collision is eminent in spite of any reaction by the driver. In some technologies, the system forewarns the driver with an acoustic signal when a collision is still avoidable, but subsequently applies the brakes automatically if the driver fails to respond. This paper presents the development and implementation of a rear-end collision avoidance system based on hierarchical control framework which consists of threat assessment layer, wheel slip ratio control layer and integrated-electro-hydraulic brake (IEHB) actuator control layer.
X