Refine Your Search

Topic

Author

Search Results

Video

Test Method for Seat Wrinkling and Bagginess

2012-05-22
This study evaluates utilizing an accelerated test method that correlates customer interaction with a vehicle seat where bagginess and wrinkling is produced. The evaluation includes correlation from warranty returns as well as test vehicle results for test verification. Consumer metrics will be discussed within this paper with respect to potential application of this test method, including but not limited to JD Power ratings. The intent of the test method is to aid in establishing appropriate design parameters of the seat trim covers and to incorporate appropriate design measures such as tie downs and lamination. This test procedure was utilized in a Design for Six Sigma (DFSS) project as an aid in optimizing seat parameters influencing trim cover performance using a Design of Experiment approach. Presenter Lisa Fallon, General Motors LLC
Technical Paper

In-Depth Considerations for Electric Vehicle Braking Systems Operation with Steep Elevation Changes and Trailering

2021-10-11
2021-01-1263
As the automotive industry prepares to roll out an unprecedented range of fully electric propulsion vehicle models over the next few years - it really brings to a head for folks responsible for brakes what used to be the subject of hypothetical musings and are now pivotal questions for system design. How do we really go about designing brakes for electric vehicles, in particular, for the well-known limit condition of descending a steep grade? What is really an “optimal’ design for brakes considering the imperatives for the entire vehicle? What are the real “limit conditions” for usage that drive the fundamental design? Are there really electric charging stations planned for or even already existing in high elevations that can affect regenerative brake capacity on the way down? What should be communicated to drivers (if anything) about driving habits for electric vehicles in routes with significant elevation change?
Technical Paper

N&V Component Structural Integration and Mounted Component Durability Implications

2020-04-14
2020-01-1396
Exterior component integration presents competing performance challenges for balanced exterior styling, safety, ‘structural feel’ [1] and durability. Industry standard practices utilize noise and vibration mode maps and source-path-receiver [2] considerations for component mode frequency placement. This modal frequency placement has an influence on ‘structural feel’ and durability performance. Challenges have increased with additional styling content, geometric overhang from attachment points, component size and mass, and sensor modules. Base excitation at component attachment interfaces are increase due to relative positioning of the suspension and propulsion vehicle source inputs. These components might include headlamps, side mirrors, end gates, bumpers and fascia assemblies. Here, we establish basic expectations for the behavior of these systems, and ultimately consolidate existing rationales that are applied to these systems.
Technical Paper

Enhancing Engine Starting Performance Using High-Power Density Brushless Starter

2020-04-14
2020-01-0459
Modern hybrid technologies, especially mild and micro-hybrids with auto start/stop feature, demand a starter with higher power, better performance and longer life than conventional brush-type starters. In this paper, a new starter design using a brushless motor is proposed. This improves the engine crank performance during autostarts due to lower inertia, higher torque and wider power band capability of the brushless motor, especially at higher speeds. The overall integrated system includes the motor, inverter and controller all packaged in the same form factor of the original starter housing as a “drop-in replacement”. The prototype starter motor is designed to operate at 48V with a peak power of 4kW but can be designed to operate at the standard 12V. This paper will describe in detail the functionalities of the overall system and the simulation and experimental results of the prototype that was tested on a 4-cylinder engine in a production crossover vehicle.
Technical Paper

Random Vibration Fatigue Life Assessment of Transmission Control Module (TCM) Bracket Considering the Mean Stress Effect due to Preload

2020-04-14
2020-01-0194
Transmission Control Module (TCM) bracket is mounted on the vehicle chassis and is subjected to the random load excitation due to the uneven surface of the road. Assembly of the TCM bracket on the vehicle chassis induces some constant stress on it due to bolt preload, which acts as a mean stress along with the varying random loads. It is important for a design engineer and CAE analyst to understand the effect of all sources of loads on vehicle mount brackets while designing them. The objective of this study is to consider the effect of mean stress in the random vibration fatigue assessment of TCM bracket. The random vibration fatigue analyses are performed for all the three directions without and with consideration of mean loads and results are compared to show the significance of mean stresses in random vibration fatigue life.
Journal Article

Vehicle Integration Factors Affecting Brake Caliper Drag

2012-09-17
2012-01-1830
Disc brakes operate with very close proximity of the brake pads and the brake rotor, with as little as a tenth of a millimeter of movement of the pads required to bring them into full contact with the rotor to generate braking torque. It is usual for a disc brake to operate with some amount of residual drag in the fully released state, signifying constant contact between the pads and the rotor. With this contact, every miniscule movement of the rotor pushes against the brake pads and changes the forces between them. Sustained loads on the brake corner, and maneuvers such as cornering, can both produce rotor movement relative to the caliper, which can push it steadily against one or both of the brake pads. This can greatly increase the residual force in the caliper, and increase drag. This dependence of drag behavior on the movement of the brake rotor creates some vehicle-dependent behavior.
Technical Paper

Dynamic Impact Transient Bump Method Development and Application for Structural Feel Performance

2020-04-14
2020-01-1081
Road induced structural feel “vehicle feels solidly built” is strongly related to the vehicle ride [1]. Excellent structural feel requires both structural and suspension dynamics considerations simultaneously. Road induced structural feel is defined as customer facing structural and component responses due to tire force inputs stemming from the unevenness of the road surface. The customer interface acceleration and noise responses can be parsed into performance criteria to provide design and tuning vehicle integration program recommendations. A dynamic impact bump method is developed for vehicle level structural feel performance assessment, diagnostics, and development tuning. Current state of on-road testing has the complexity of multiple impacts, averaging multiple road induced tire patch impacts over a length of a road segment, and test repeatability challenges.
Technical Paper

General Motors Full Scale Wind Tunnel Upgrade

2020-04-14
2020-01-0687
The General Motors Aero Lab’s Full-Scale Wind Tunnel Facility, which came into operation in August of 1980[1], has undergone the significant upgrade of installing a state-of-the-art moving ground plane system. After almost four decades of continuous use the full-scale wind tunnel also received some significant maintenance to other areas, including a new heat exchanger, main fan overhaul, and replacement of the test section acoustic treatment. A 5-belt system was installed along with an integrated vehicle lift system. The center belt measures 8.5m long and can accommodate two belt widths of 1100mm and 950mm. Flow quality and other wind tunnel performance parameters were maintained to prior specifications which are on par with the latest industry standards [2]. The new 5-belt rolling road system maintains GM’s industry leading vehicle aerodynamic development and the improved acoustic panels ensure GM continues to develop vehicles with leading class acoustics.
Journal Article

Cosmetic Corrosion Test for Aluminum Autobody Panels: Final Report

2010-04-12
2010-01-0726
Over the past several years a task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has conducted extensive on-vehicle field testing and numerous accelerated lab tests with the goal of establishing a standard accelerated test method for cosmetic corrosion evaluations of finished aluminum auto body panels. This project has been a cooperative effort with OEM, supplier, and consultant participation and was also supported in part by DOE through USAMP (AMD 309). The focus of this project has been the identification of a standardized accelerated cosmetic corrosion test that exhibits the same appearance, severity, and type of corrosion products that are exhibited on identical painted aluminum panels exposed to service relevant environments. Multi-year service relevant exposures were conducted by mounting panels on-vehicles in multiple locations in the US and Canada.
Technical Paper

Corroborative Evaluation of the Real-World Energy Saving Potentials of InfoRich Eco-Autonomous Driving (iREAD) System

2020-04-14
2020-01-0588
There has been an increasing interest in exploring the potential to reduce energy consumption of future connected and automated vehicles. People have extensively studied various eco-driving implementations that leverage preview information provided by on-board sensors and connectivity, as well as the control authority enabled by automation. Quantitative real-world evaluation of eco-driving benefits is a challenging task. The standard regulatory driving cycles used for measuring exhaust emissions and fuel economy are not truly representative of real-world driving, nor for capturing how connectivity and automation might influence driving trajectories. To adequately consider real-world driving behavior and potential “off-cycle” impacts, this paper presents four collaborative evaluation methods: large-scale simulation, in-depth simulation, vehicle-in-the-loop testing, and vehicle road testing.
Technical Paper

HEV Architectures - Power Electronics Optimization through Collaboration Sub-topic: Inverter Design and Collaboration

2010-10-19
2010-01-2309
As the automotive industry quickly moves towards hybridized and electrified vehicles, the optimal integration of power electronics in these vehicles will have a significant impact not only on the cost, performance, reliability, and durability; but ultimately on customer acceptance and market success of these technologies. If properly executed with the right cost, performance, reliability and durability, then both the industry and the consumer will benefit. It is because of these interdependencies that the pace and scale of success, will hinge on effective collaboration. This collaboration will be built around the convergence of automotive and industrial technology. Where real time embedded controls mixes with high power and voltage levels. The industry has already seen several successful collaborations adapting power electronics to the automotive space in target vehicles.
Technical Paper

Utilizing a Tracked 3-Dimensional Acoustic Probe in the Development of an Automotive Front-of-Dash

2017-06-05
2017-01-1869
During the development of an automotive acoustic package, valuable information can be gained by visualizing the acoustic energy flow through the Front-of-Dash (FOD) when a sound source is placed in the engine compartment. Two of the commonly used methods for generating the visual map of the acoustic field include Sound Intensity measurements and array technologies. An alternative method is to use a tracked 3-dimensional acoustic probe to scan and visualize the FOD in real-time when the sound source is injecting noise into the engine compartment. The scan is used to focus the development of the FOD acoustic package on the weakest areas by identifying acoustic leaks and locations with low Transmission Loss. This paper provides a brief discussion of the capabilities of the tracked 3-D acoustic probe, and presents examples of the implementation of the probe during the development of the FOD acoustic package for two mid-sized sedans.
Technical Paper

Defining In-Vehicle Location and Functional Attributes of a ‘Button-Style Electronic Automatic Transmission Shifter’ Using DFSS Methodology with Customer Clinic Approach

2017-03-28
2017-01-1131
The implementation of electronic shifters (e-shifter) for automatic transmissions in vehicles has created many new opportunities for the customer facing transmission interface and in-vehicle packaging. E-shifters have become popular in recent years as their smaller physical size leads to packaging advantages, they reduce the mass of the automatic transmission shift system, they are easier to install during vehicle assembly, and act as an enabler for autonomous driving. A button-style e-shifter has the ability to create a unique customer interface to the automatic transmission, as it is very different from the conventional column lever or linear console shifter. In addition to this, a button-style e-shifter can free the center console of valuable package space for other customer-facing functions, such as storage bins and Human-Machine Interface controllers.
Technical Paper

High Power Cell for Mild and Strong Hybrid Applications Including Chevrolet Malibu

2017-03-28
2017-01-1200
Electric vehicles have a strong potential to reduce a continued dependence on fossil fuels and help the environment by reducing pollution. Despite the desirable advantage, the introduction of electrified vehicles into the market place continues to be a challenge due to cost, safety, and life of the batteries. General Motors continues to bring vehicles to market with varying level of hybrid functionality. Since the introduction of Li-ion batteries by Sony Corporation in 1991 for the consumer market, significant progress has been made over the past 25 years. Due to market pull for consumer electronic products, power and energy densities have significantly increased, while costs have dropped. As a result, Li-ion batteries have become the technology of choice for automotive applications considering space and mass is very critical for the vehicles.
Technical Paper

Particulate Characteristics for Varying Engine Operation in a Gasoline Spark Ignited, Direct Injection Engine

2011-04-12
2011-01-1220
The objective of this research is a detailed investigation of particulate sizing and number count from a spark-ignited, direct-injection (SIDI) engine at different operating conditions. The engine is a 549 [cc] single-cylinder, four-valve engine with a flat-top piston, fueled by Tier II EEE. A baseline engine operating condition, with a low number of particulates, was established and repeatability at this condition was ascertained. This baseline condition is specified as 2000 rpm, 320 kPa IMEP, 280 [°bTDC] end of injection (EOI), and 25 [°bTDC] ignition timing. The particle size distributions were recorded for particle sizes between 7 and 289 [nm]. The baseline particle size distribution was relatively flat, around 1E6 [dN/dlogDp], for particle diameters between 7 and 100 [nm], before dropping off to decreasing numbers at larger diameters. Distributions resulting from a matrix of different engine conditions were recorded.
Technical Paper

Modeling the Stiffness and Damping Properties of Styrene-Butadiene Rubber

2011-05-17
2011-01-1628
Styrene-Butadiene Rubber (SBR), a copolymer of butadiene and styrene, is widely used in the automotive industry due to its high durability and resistance to abrasion, oils and oxidation. Some of the common applications include tires, vibration isolators, and gaskets, among others. This paper characterizes the dynamic behavior of SBR and discusses the suitability of a visco-elastic model of elastomers, known as the Kelvin model, from a mathematical and physical point of view. An optimization algorithm is used to estimate the parameters of the Kelvin model. The resulting model was shown to produce reasonable approximations of measured dynamic stiffness. The model was also used to calculate the self heating of the elastomer due to energy dissipation by the viscous damping components in the model. Developing such a predictive capability is essential in understanding the dynamic behavior of elastomers considering that their dynamic stiffness can in general depend on temperature.
Technical Paper

Automation in Simulation Process: Simplifying the Complexity in Vehicle Design

2018-04-03
2018-01-0471
General Motors (GM) vehicle design operations group has envisioned that all designers and Design Engineers (DEs) should be able to analyze simple and single components and produce robust subsystem parts to support full vehicle system analysis. This vision is achieved by developing the Smart Simulation Tool (SST) within the Siemens NX CAD system. This tool empowers the designers to take charge of simple parts and produce high quality parts first time. This tool will also make both design and engineering analysis organizations at General Motors more efficient and productive. This paper describes the Smart Simulation Tool that was developed to automate the pre and post processing tasks of the Siemens NX Advanced Simulation process. Generally, the simulation process consumes a lot of designer’s time for building the Finite Element Analysis (FEA) models, typically one to two hours and is very tedious and has the potential for errors.
Technical Paper

Gauge R & R Study for SAE J3103

2021-04-06
2021-01-0862
The H-point is a critical part of vehicle design as it is the basis for many engineering dimensions within the vehicle interior. A complete design process includes comparisons of the design to competitive benchmark vehicles. However, the competitive design considerations needed to determine the common standard H-point reference are often unknown. The SAE Human Accommodation and Design Devices (HADD) technical committee recently published a new standard benchmark SgRP procedure [2]. This new standard practice needed to be tested with respect to the accuracy and repeatability for determining the unknown h-point design parameters within industry benchmarking tolerances. In 2019, the SAE HADD committee conducted a study to evaluate the reproducibility of the new procedure. This paper presents detailed results of that study and discusses opportunities for applying the new benchmark practice.
Technical Paper

Measured and LES Motored-Flow Kinetic Energy Evolution in the TCC-III Engine

2018-04-03
2018-01-0192
A primary goal of large eddy simulation, LES, is to capture in-cylinder cycle-to-cycle variability, CCV. This is a first step to assess the efficacy of 35 consecutive computed motored cycles to capture the kinetic energy in the TCC-III engine. This includes both the intra-cycle production and dissipation as well as the kinetic energy CCV. The approach is to sample and compare the simulated three-dimensional velocity equivalently to the available two-component two-dimensional PIV velocity measurements. The volume-averaged scale-resolved kinetic energy from the LES is sampled in three slabs, which are volumes equal to the two axial and one azimuthal PIV fields-of-view and laser sheet thickness. Prior to the comparison, the effects of sampling a cutting plane versus a slab and slabs of different thicknesses are assessed. The effects of sampling only two components and three discrete planar regions is assessed.
Technical Paper

Development of General Motors’ eAssist Gen3 Propulsion System

2018-04-03
2018-01-0422
General Motors’ 3rd generation eAssist propulsion systems build upon the experience gained from the 2nd generation 115v system and the 1st generation 36v system. Extensive architectural studies were conducted to optimize the new eAssist system to maintain the performance and fuel economy gains of the 2nd generation 115v system while preserving passenger and cargo space, and reducing cost. Three diverse vehicle applications have been brought to production. They include two similar pickup trucks with 5.3 liter V8 engines and 8 speed transmissions, a 4-door passenger car with 2.5 liter 4 cylinder normally aspirated gasoline engine and a 6-speed automatic transmission, and a crossover SUV with a 2.0-liter turbocharged engine and 9 speed transmission. The key electrification components are a new water cooled induction motor/generator (MG), new water cooled power electronics module, and two major variants of 86v lithium ion battery packs.
X