Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Schlieren Methodology for the Analysis of Transient Diesel Flame Evolution

2013-09-08
2013-24-0041
Schlieren/shadowgraphy has been adopted in the combustion research as a standard technique for tip penetration analysis of sprays under diesel-like engine conditions. When dealing with schlieren images of reacting sprays, the combustion process and the subsequent light emission from the soot within the flame have revealed both limitations as well as considerations that deserve further investigation. Seeking for answers to such concerns, the current work reports an experimental study with this imaging technique where, besides spatial filtering at the Fourier plane, both short exposure time and chromatic filtering were performed to improve the resulting schlieren image, as well as the reliability of the subsequent tip penetration measurement. The proposed methodology has reduced uncertainties caused by artificial pixel saturation (blooming).
Journal Article

Combustion Recession after End of Injection in Diesel Sprays

2015-04-14
2015-01-0797
This work contributes to the understanding of physical mechanisms that control flashback, or more appropriately combustion recession, in diesel sprays. A large dataset, comprising many fuels, injection pressures, ambient temperatures, ambient oxygen concentrations, ambient densities, and nozzle diameters is used to explore experimental trends for the behavior of combustion recession. Then, a reduced-order model, capable of modeling non-reacting and reacting conditions, is used to help interpret the experimental trends. Finally, the reduced-order model is used to predict how a controlled ramp-down rate-of-injection can enhance the likelihood of combustion recession for conditions that would not normally exhibit combustion recession. In general, fuel, ambient conditions, and the end-of-injection transient determine the success or failure of combustion recession.
Technical Paper

OMEx Fuel and RCCI Combustion to Reach Engine-Out Emissions Beyond the Current EURO VI Legislation

2021-09-05
2021-24-0043
Emissions regulations for engine and vehicle manufacturers are bound to become more limiting to prevent greenhouse gas emissions and mitigate the negative effects that potentiate global warming. To fulfill the energy demand necessary in the transportation sector for the short-to-medium term, a parallel optimization of the internal combustion engine, powertrain and fuels is necessary. The combination of novel combustion modes like the reactivity-controlled compression ignition (RCCI), that seeks the benefits of both compression ignition and spark ignition engines, with the so-called e-fuels, that reduce the carbon footprint from well-to-wheel, is worth exploring. This work investigates the potential of the RCCI concept using OMEx-gasoline to reduce the engine-out emissions beyond the current EURO VI legislation. To do so, eight representative operating conditions from several driving cycles for heavy-duty vehicles will be explored experimentally.
Technical Paper

Modeling of Reactivity Controlled Compression Ignition Combustion Using a Stochastic Reactor Model Coupled with Detailed Chemistry

2021-09-05
2021-24-0014
Advanced combustion concepts such as reactivity controlled compression ignition (RCCI) have been proven to be capable of fundamentally improve the conventional Diesel combustion by mitigating or avoiding the soot-NOx trade-off, while delivering comparable or better thermal efficiency. To further facilitate the development of the RCCI technology, a robust and possibly computationally efficient simulation framework is needed. While many successful studies have been published using 3D-CFD coupled with detailed combustion chemistry solvers, the maturity level of the 0D/1D based software solution offerings is relatively limited. The close interaction between physical and chemical processes challenges the development of predictive numerical tools, particularly when spatial information is not available.
Technical Paper

Influence of Injection Timing on Equivalence Ratio Stratification of Methanol and Isooctane in a Heavy-Duty Compression Ignition Engine

2020-09-15
2020-01-2069
CO2 is a greenhouse gas that is believed to be one of the main contributors to global warming. Recent studies show that a combination of methanol as a renewable fuel and advanced combustion concepts could be a promising future solution to alleviate this problem. However, high unburned hydrocarbon (UHC) and carbon monoxide (CO) emissions can be stated as the main drawback in low load operations when using methanol under advanced combustion concepts. This issue can be mitigated by modifying the stratification of the local equivalence ratio to achieve a favorable level. The stratifications evolved, and the regimes that can simultaneously produce low emissions, and high combustion efficiency can be identified by sweeping the injection timing from homogeneous charge compression ignition (HCCI) to partially premixed combustion (PPC). Understanding how the stratification of the local equivalence ratio for methanol evolves during the sweep is essential to gain these benefits.
Journal Article

Study of Air Flow Interaction with Pilot Injections in a Diesel Engine by Means of PIV Measurements

2017-03-28
2017-01-0617
With ever-demanding emission legislations in Compression Ignition (CI) engines, new premixed combustion strategies have been developed in recent years seeking both, emissions and performance improvements. Since it has been shown that in-cylinder air flow affects the combustion process, and hence the overall engine performance, the study of swirling structures and its interaction with fuel injection are of great interest. In this regard, possible Turbulent Kinetic Energy (TKE) distribution changes after fuel injection may be a key parameter for achieving performance improvements by reducing in-cylinder heat transfer. Consequently, this paper aims to gain an insight into spray-swirl interaction through the analysis of in-cylinder velocity fields measured by Particle Image Velocimetry (PIV) when PCCI conditions are proposed. Experiments are carried out in a single cylinder optical Diesel engine with bowl-in-piston geometry.
Journal Article

Effects of End-of-Injection Transients on Combustion Recession in Diesel Sprays

2016-04-05
2016-01-0745
End-of-injection transients have recently been shown to be important for combustion and emissions outcomes in diesel engines. The objective of this work is to develop an understanding of the coupling between end-of-injection transients and the propensity for second-stage ignition in mixtures upstream of the lifted diesel flame, or combustion recession. An injection system capable of varying the end-of-injection transient was developed to study single fuel sprays in a newly commissioned optically-accessible spray chamber under a range of ambient conditions. Simultaneous high-speed optical diagnostics, namely schlieren, OH* chemiluminescence, and broadband luminosity, were used to characterize the spatial and temporal development of combustion recession after the end of injection.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Particulates Size Distribution of Reactivity Controlled Compression Ignition (RCCI) on a Medium-Duty Engine Fueled with Diesel and Gasoline at Different Engine Speeds

2017-09-04
2017-24-0085
This work investigates the particulates size distribution of reactivity controlled compression ignition combustion, a dual-fuel concept which combines the port fuel injection of low-reactive/gasoline-like fuels with direct injection of highly reactive/diesel-like fuels. The particulates size distributions from 5-250 nm were measured using a scanning mobility particle sizer at six engine speeds, from 950 to 2200 rpm, and 25% engine load. The same procedure was followed for conventional diesel combustion. The study was performed in a single-cylinder engine derived from a stock medium-duty multi-cylinder diesel engine of 15.3:1 compression ratio. The combustion strategy proposed during the tests campaign was limited to accomplish both mechanical and emissions constraints. The results confirms that reactivity controlled compression ignition promotes ultra-low levels of nitrogen oxides and smoke emissions in the points tested.
Journal Article

A Combination of Swirl Ratio and Injection Strategy to Increase Engine Efficiency

2017-03-28
2017-01-0722
Growing awareness about CO2 emissions and their environmental implications are leading to an increase in the importance of thermal efficiency as criteria to design internal combustion engines (ICE). Heat transfer to the combustion chamber walls contributes to a decrease in the indicated efficiency. A strategy explored in this study to mitigate this efficiency loss is to promote low swirl conditions in the combustion chamber by using low swirl ratios. A decrease in swirl ratio leads to a reduction in heat transfer, but unfortunately, it can also lead to worsening of combustion development and a decrease in the gross indicated efficiency. Moreover, pumping work plays also an important role due to the effect of reduced intake restriction to generate the swirl motion. Current research evaluates the effect of a dedicated injection strategy to enhance combustion process when low swirl is used.
Journal Article

A Spline-Based Modeling Algorithm for Application to Aerodynamic Shape Optimization Based on CFD Analysis

2017-03-28
2017-01-1510
In early phases of conceptual design stages for developing a new car in the modern automobile industry, the lack of systematic methodology to efficiently converge to an agreement between the aesthetics and aerodynamic performance tremendously increases budget and time. During these procedures, one of the most important tasks is to create geometric information which is versatilely morphable upon the demands of both of stylists and engineers. In this perspective, this paper proposes a Spline-based Modeling Algorithm (SMA) to implement into performing aerodynamic design optimization research based on CFD analysis. Once a 3-perspective schematic of a car is given, SMA regresses the backbone boundary lines by using optimum polynomial interpolation methods with the best goodness of fit, eventually reconstructing the 3D shape by linearly interpolating from the extracted boundaries minimizing loss of important geometric features.
Technical Paper

Application of Extended Messinger Models to Complex Geometries

2020-03-10
2020-01-0022
Since, ice accretion can significantly degrade the performance and the stability of an airborne vehicle, it is imperative to be able to model it accurately. While ice accretion studies have been performed on airplane wings and helicopter blades in abundance, there are few that attempt to model the process on more complex geometries such as fuselages. This paper proposes a methodology that extends an existing in-house Extended Messinger solver to complex geometries by introducing the capability to work with unstructured grids and carry out spatial surface streamwise marching. For the work presented here commercial solvers such as STAR-CCM+ and ANSYS Fluent are used for the flow field and droplet dispersed phase computations. The ice accretion is carried out using an in-house icing solver called GT-ICE. The predictions by GT-ICE are compared to available experimental data, or to predictions by other solvers such as LEWICE and STAR-CCM+.
Technical Paper

Experimental and Numerical Assessment of Active Pre-chamber Ignition in Heavy Duty Natural Gas Stationary Engine

2020-04-14
2020-01-0819
Gas engines (fuelled with CNG, LNG or Biogas) for generation of power and heat are, to this date, taking up larger shares of the market with respect to diesel engines. In order to meet the limit imposed by the TA-Luft regulations on stationary engines, lean combustion represents a viable solution for achieving lower emissions as well as efficiency levels comparable with diesel engines. Leaner mixtures however affect the combustion stability as the flame propagation velocity and consequently heat release rate are slowed down. As a strategy to deliver higher ignition energy, an active pre-chamber may be used. This work focuses on assessing the performance of a pre-chamber combustion configuration in a stationary heavy-duty engine for power generation, operating at different loads, air-to-fuel ratios and spark timings.
Technical Paper

Two-Scale Command Shaping for Reducing NVH during Engine Shutdown

2020-04-14
2020-01-0411
Two-scale command shaping is a recently proposed feedforward control method aimed at mitigating undesirable vibrations in nonlinear systems. The TSCS strategy uses a scale separation to cancel oscillations arising from nonlinear behavior of the system, and command shaping of the remaining linear problem. One promising application of TSCS is in reducing engine restart and shutdown vibrations found in conventional and in hybrid electric vehicle powertrains equipped with start-stop features. The efficacy of the TSCS during internal combustion engine restart has been demonstrated theoretically and experimentally in the authors’ prior works. The present article presents simulation results and describes the verified experimental apparatus used to study TSCS as applied to the ICE shutdown case. The apparatus represents a typical HEV powertrain and consists of a 1.03 L three-cylinder diesel ICE coupled to a permanent magnet alternating current electric machine through a spur gear coupling.
Technical Paper

Impact of Multiple Injection Strategies on Performance and Emissions of Methanol PPC under Low Load Operation

2020-04-14
2020-01-0556
There is growing global interest in using renewable alcohols to reduce the greenhouse gases and the reliance on conventional fossil fuels. Recent studies show that methanol combined with partially premixed combustion provide clear performance and emission benefits compared to conventional diesel diffusion combustion. Nonetheless, high unburned hydrocarbon (HC) and carbon monoxide (CO) emissions can be stated as the main PPC drawback in light load condition when using high octane fuel such as Methanol with single injection strategy. Thus, the present experimental study has been carried out to investigate the influence of multiple injection strategies on the performance and emissions with methanol fuel in partially premixed combustion. Specifically, the main objective is to reduce HC, CO and simultaneously increase the gross indicated efficiency compared to single injection strategy.
Technical Paper

Experimental and Numerical Analysis of Passive Pre-Chamber Ignition with EGR and Air Dilution for Future Generation Passenger Car Engines

2020-04-14
2020-01-0238
Nowadays the combination of strict regulations for pollutant and CO2 emissions, together with the irruption of electric vehicles in the automotive market, is arising many concerns for internal combustion engine community. For this purpose, many research efforts are being devoted to the development of a new generation of high-performance spark-ignition (SI) engines for passenger car applications. Particularly, the PC ignition concept, also known as Turbulent Jet Ignition (TJI), is the focus of several investigations for its benefits in terms of engine thermal efficiency. The passive or un-scavenged version of this ignition strategy does not require an auxiliary fuel supply inside the PC; therefore, it becomes a promising solution for passenger car applications as packaging and installation are simple and straightforward.
Journal Article

Power-Split HEV Control Strategy Development with Refined Engine Transients

2012-04-16
2012-01-0629
Power-split hybrid-electric vehicles (HEVs) employ two power paths between the internal combustion (IC) engine and the driven wheels routed through gearing and electric machines (EMs) composing an electrically variable transmission (EVT). The EVT allows IC engine control such that rotational speed can be independent of vehicle speed at all times. By breaking the rigid mechanical connection between the IC engine and the driven wheels, the EVT allows the IC engine to operate in the most efficient region of its characteristic brake specific fuel consumption (BSFC) map. If the most efficient IC engine operating point produces more power than is requested by the driver, the excess IC engine power can be stored in the energy storage system (ESS) and used later. Conversely, if the most efficient IC engine operating point does not meet the power request of the driver, the ESS delivers the difference to the wheels through the EMs.
Technical Paper

Lookie Here! Designing Directional User Indicators across Displays in Conditional Driving Automation

2020-04-14
2020-01-1201
With the advent of autonomous vehicles, the human driver’s attention will slowly be relinquished from the driving task. It will allow drivers to participate in more non-driving related activities, such as engaging with information and entertainment systems. However, the automated driving system would need to notify the driver of upcoming points-of-interest on the road when the driver’s attention is focused on their screen rather than on the road or driving display. In this paper, we investigated whether providing directional alerts for an upcoming point-of-interest (POI) in or around the user’s active screen can augment their ability in relocating their visual attention to the POI on the road when traveling in a vehicle with Conditional Driving Automation. A user study (N = 15) was conducted to compare solutions for alerts that presented themselves in the participants’ central and peripheral field of view.
Technical Paper

Combustion Behaviour of Blends of Synthetic Fuels in an Optical Single Cylinder Engine

2021-09-05
2021-24-0038
The reduction of carbon footprint of compression ignition engines for road transport makes it necessary to search for clean fuels alternative to diesel and to evaluate them under engine conditions. For this reason, in this paper, the combustion behaviour of different blends of synthetic fuels has been analyzed in an optical single cylinder engine of Medium Duty size (0,8 liters per cylinder) by means of optical techniques. The aim is to evaluate the effect of synthetic fuels, both partly or completely fossil diesel, in terms of combustion behaviours and soot formation. Therefore, different blends of oxymethylene dimethyl ether (OMEX) with diesel and neat hydrotreated vegetable oil (HVO) were studied. A conventional common rail injection system and a single injection strategy was used. In addition, special care was taken to ensure that conditions inside the engine cylinder at the injection start were as close as possible to the conditions used in previous studies.
Journal Article

Backward-Looking Simulation of the Toyota Prius and General Motors Two-Mode Power-Split HEV Powertrains

2011-04-12
2011-01-0948
This paper presents a comparative analysis of two different power-split hybrid-electric vehicle (HEV) powertrains using backward-looking simulations. Compared are the front-wheel drive (FWD) Toyota Hybrid System II (THS-II) and the FWD General Motors Allison Hybrid System II (GM AHS-II). The Toyota system employs a one-mode electrically variable transmission (EVT), while the GM system employs a two-mode EVT. Both powertrains are modeled with the same assumed mid-size sedan chassis parameters. Each design employs their native internal combustion (IC) engine because the transmission's characteristic ratios are designed for the respective brake specific fuel consumption (BSFC) maps. Due to the similarities (e.g., power, torque, displacement, and thermal efficiency) between the two IC engines, their fuel consumption and performance differences are neglected in this comparison.
X