Refine Your Search

Topic

Search Results

Journal Article

Gasoline Fuelled Partially Premixed Compression Ignition in a Light Duty Multi Cylinder Engine: A Study of Low Load and Low Speed Operation

2009-06-15
2009-01-1791
The objective of this study was to examine the operating characteristics of a light duty multi cylinder compression ignition engine with regular gasoline fuel at low engine speed and load. The effects of fuel stratification by means of multiple injections as well as the sensitivity of auto-ignition and burn rate to intake pressure and temperature are presented. The measurements used in this study included gaseous emissions, filter smoke opacity and in-cylinder indicated information. It was found that stable, low emission operation was possible with raised intake manifold pressure and temperature, and that fuel stratification can lead to an increase in stability and a reduced reliance on increased temperature and pressure. It was also found that the auto-ignition delay sensitivity of gasoline to intake temperature and pressure was low within the operating window considered in this study.
Journal Article

An Experimental Study on Truck Side-Skirt Flow

2016-04-05
2016-01-1593
The underbody of a truck is responsible for an appreciable portion of the vehicle’s aerodynamic drag, and thus its fuel consumption. This paper investigates experimentally the flow around side-skirts, a common underbody aerodynamic device which is known to be effective at reducing vehicle drag. A full, 1/10 scale European truck model is used. The chassis of the model is designed to represent one that would be found on a typical trailer, and is fully reconfigurable. Testing is carried out in a water towing tank, which allows the correct establishment of the ground flow and rotating wheels. Optical access into the underbody is possible through the clear working section of the facility. Stereoscopic and planar Particle Image Velocimetry (PIV) set-ups are used to provide both qualitative images of and quantitative information on the flow field.
Journal Article

A Method for Truck Underbody Aerodynamic Investigation

2016-09-16
2016-01-9020
The underbody of a truck is responsible for an appreciable portion of the vehicle’s aerodynamic drag, and thus its fuel consumption. A better understanding of the underbody aerodynamics could lead to designs that are more environmentally friendly. Unfortunately there are difficulties with correctly replicating the ground condition and rotating wheels when using the classical approach of a wind-tunnel for aerodynamic investigation. This in turn leads to computational modelling problems. A lack of experimental data for Computational Fluid Dynamics (CFD) validation means that the flow field in this area has seldom been investigated. There is thus very little information available for the optimisation and design of underbody aerodynamic devices. This paper investigates the use of a water-towing tank, which allows the establishment of the correct near-ground flow while permitting good optical access. Using a 1/10 scale model, Reynolds Numbers of around 0.7 million are achieved.
Journal Article

Fundamental Aspects of Jet Ignition for Natural Gas Engines

2017-09-04
2017-24-0097
Large-bore natural gas engines may use pre-chamber ignition. Despite extensive research in engine environments, the exact nature of the jet, as it exits the pre-chamber orifice, is not thoroughly understood and this leads to uncertainty in the design of such systems. In this work, a specially-designed rig comprising a quartz pre-chamber fit with an orifice and a turbulent flowing mixture outside the pre-chamber was used to study the pre-chamber flame, the jet, and the subsequent premixed flame initiation mechanism by OH* and CH* chemiluminescence. Ethylene and methane were used. The experimental results are supplemented by LES and 0D modelling, providing insights into the mass flow rate evolution at the orifice and into the nature of the fluid there. Both LES and experiment suggest that for large orifice diameters, the flow that exits the orifice is composed of a column of hot products surrounded by an annulus of unburnt pre-chamber fluid.
Journal Article

Measuring the Impact of Engine Oils and Fuels on Low-Speed Pre-Ignition in Downsized Engines

2014-04-01
2014-01-1219
One of the limits on the maximum fuel efficiency benefit to be gained from turbocharged, downsized gasoline engines is the occurrence of low speed pre-ignition (LSPI). LSPI may lead to high pressures and extreme knock (megaknock or superknock) which can cause severe engine damage. Though the mechanism leading to megaknock is not completely resolved, LSPI is thought to arise from local auto-ignition of areas in the cylinder which are rich in low ignition delay “contaminants” such as engine oil and/or heavy ends of gasoline. These contaminants are introduced to the combustion chamber at various points in the engine cycle (e.g. entering from the top land crevice during blow-down or washed from the cylinder walls during DI wall impingement). This paper describes a method for testing the propensity of different contaminants to cause a local pre-ignition in a gasoline engine. During one cycle, a small amount of contaminant is injected into one cylinder of a 4 cylinder engine.
Technical Paper

Highly Homogeneous Compression Ignition in a Direct Injection Diesel Engine Fuelled with Diesel and Biodiesel

2007-07-23
2007-01-2020
Highly homogeneous compression ignition is difficult to achieve in a direct injection diesel engine. The difficulty of achieving adequate fuel vaporization and the problems of fuel spray wall impingement are the main factors. Limitation of the maximum operating load results from high rates of pressure rise that occur in this combustion regime. The levels of HC and CO emissions are raised substantially when compared with conventional combustion and remain a significant emission factor. In this study, two methods of achieving highly homogeneous combustion in a direct injection diesel engine were investigated, Nissan MK type and early injection. The effects of fuel injection pressure, injection timing, EGR level, EGR cooler efficiency and compression ratio were examined using a conventional 4 cylinder 2.0L common rail diesel engine with 18.4:1 and 14.4:1 compression ratios.
Technical Paper

Novel Methods for Characterizing the Mechanical Durability of Automobile Paint Systems

1998-02-23
980977
This paper presents two new methods to quantitatively evaluate the mechanical durability of multi-layered automotive paint systems. The first examines the resistance of the paint system to particle impacts and involves the impact of hard particles against the painted surface, under controlled conditions. The second test examines the resistance of the clearcoat layer in the paint system to surface abrasion, or mar. The test uses a steel sphere which is rotated against the paint surface in the presence of a slurry of fine abrasive particles. These two techniques have been successfully applied to a set of commercial automobile paints, and were found to discriminate well between them and give reproducible, quantitative data. The effects of the bake conditions on both the erosion and abrasion resistance of a full paint system and the abrasion resistance of a range of commercial clearcoats are examined in detail.
Technical Paper

Studying the Influence of Direct Injection on PCCI Combustion and Emissions at Engine Idle Condition Using Two Dimensional CFD and Stochastic Reactor Model

2008-04-14
2008-01-0021
A detailed chemical model was implemented in the KIVA-3V two dimensional CFD code to investigate the effects of the spray cone angle and injection timing on the PCCI combustion process and emissions in an optical research diesel engine. A detailed chemical model for Primary Reference Fuel (PRF) consisting of 157 species and 1552 reactions was used to simulate diesel fuel chemistry. The model validation shows good agreement between the predicted and measured pressure and emissions data in the selected cases with various spray angles and injection timings. If the injection is retarded to -50° ATDC, the spray impingement at the edge of the piston corner with 100° injection angle was shown to enhance the mixing of air and fuel. The minimum fuel loss and more widely distributed fuel vapor contribute to improving combustion efficiency and lowering uHC and CO emissions in the engine idle condition.
Technical Paper

Study of Cycle-By-Cycle Air-to-Fuel Ratio Determined from the Exhaust Gas Composition and a Novel Fast Response Device Based on a Wide Band Lambda Sensor

2008-10-06
2008-01-2439
This paper describes cyclic Air/Fuel ratio (AFR) measurements carried out with a novel device (fUEGO) based on a production Universal Exhaust Gas Oxygen sensor, but modified to give an improved frequency response. The results are compared to AFR calculated from a fast CO/CO2 analyser and a fast response flame ionization detector (FID). The direct comparison of the two different methods for determining the cyclic AFR reveals that the electrochemical device is in reasonable agreement with the more complex carbon balance method and can provide reliable cyclic AFR measurements with a reduced requirement for equipment and data post processing. The fUEGO however is sensitive to elevated levels of uHC's (unburned hydrocarbons) during misfires or partial burns and readings during such situations usually show deviations compared to the carbon balance method.
Technical Paper

Sensitivity of Flamelet Combustion Model to Flame Curvature for IC Engine Application

2017-09-04
2017-24-0038
Engines with reduced emissions and improved efficiency are of high interest for road transport. However, achieving these two goals is challenging and various concepts such as PFI/DI/HCCI/PCCI are explored by engine manufacturers. The computational fluid dynamics is becoming an integral part of modern engine development programme because this method provides access to in-cylinder flow and thermo-chemical processes to develop a closer understanding to tailor tumble and swirling motions to construct green engines. The combustion modelling, its accuracy and robustness play a vital role in this. Out of many modelling methods proposed in the past flamelet based methods are quite attractive for SI engine application. In this study, FlaRe (Flamelets revised for physical consistencies) approach is used to simulate premixed combustion inside a gasoline PFI single-cylinder, four-stroke SI engine. This approach includes a parameter representing the effects of flame curvature on the burning rate.
Technical Paper

Application of a New Turbulent Flame Speed Combustion Model on Burn Rate Simulation of Spark Ignition Engines

2016-04-05
2016-01-0588
This work presents turbulent premixed combustion modeling in spark ignition engines using G-equation based turbulent combustion model. In present study, a turbulent flame speed expression proposed and validated in recent years by two co-authors of this paper is applied to the combustion simulation of spark ignition engines. This turbulent flame speed expression has no adjustable parameters and its constants are closely tied to the physics of scalar mixing at small scales. Based on this flame speed expression, a minor modification is introduced in this paper considering the fact that the turbulent flame speed changes to laminar flame speed if there is no turbulence. This modified turbulent flame speed expression is implemented into Ford in-house CFD code MESIM (multi-dimensional engine simulation), and is validated extensively.
Technical Paper

A Fourier Analysis Based Synthetic Method for In-cylinder Pressure Estimation

2006-10-16
2006-01-3425
The cylinder pressure signal, as an instantaneous and direct measure of the engine operation, contains valuable information for closed loop engine control and offers very useful engine monitoring and control capabilities. The estimation technique for cylinder pressure has been investigated for many years. Based on the Frequency Analysis Method, a synthetic estimation method is proposed in this paper to estimate pressure. Methods that are successful in obtaining a more accurate estimated cylinder pressure over a wider range of crankshaft angle are reported. Quantitative results obtained from application of the method are also given.
Technical Paper

HCCI Combustion Control Using Dual-Fuel Approach: Experimental and Modeling Investigations

2012-04-16
2012-01-1117
A dual-fuel approach to control combustion in HCCI engine is investigated in this work. This approach involves controlling the combustion heat release rate by adjusting fuel reactivity according to the conditions inside the cylinder. Experiments were performed on a single-cylinder research engine fueled with different ratios of primary reference fuels and operated at different speed and load conditions, and results from these experiments showed a clear potential for the approach to expand the HCCI engine operation window. Such potential is further demonstrated dynamically using an optimized stochastic reactor model integrated within a MATLAB code that simulates HCCI multi-cycle operation and closed-loop control of fuel ratio. The model, which utilizes a reduced PRF mechanism, was optimized using a multi-objective genetic algorithm and then compared to a wide range of engine data.
Technical Paper

Multi-Objective Optimization of a Kinetics-Based HCCI Model Using Engine Data

2011-08-30
2011-01-1783
A multi-objective optimization scheme based on stochastic global search is developed and used to examine the performance of an HCCI model containing a reduced chemical kinetic mechanism, and to study interrelations among different model responses. A stochastic reactor model of an HCCI engine is used in this study, and dedicated HCCI engine experiments are performed to provide reference for the optimization. The results revealed conflicting trends among objectives normally used in mechanism optimization, such as ignition delay and engine cylinder pressure history, indicating that a single best combination of optimization variables for these objectives did not exist. This implies that optimizing chemical mechanisms to maintain universal predictivity across such conflicting responses will only yield a predictivity tradeoff. It also implies that careful selection of optimization objectives increases the likelihood of better predictivity for these objectives.
Technical Paper

An Experimental Study on Engine Dynamics Model Based In-Cylinder Pressure Estimation

2012-04-16
2012-01-0896
The information provided by the in-cylinder pressure signal is of great importance for modern engine management systems. The obtained information is implemented to improve the control and diagnostics of the combustion process in order to meet the stringent emission regulations and to improve vehicle reliability and drivability. The work presented in this paper covers the experimental study and proposes a comprehensive and practical solution for the estimation of the in-cylinder pressure from the crankshaft speed fluctuation. Also, the paper emphasizes the feasibility and practicality aspects of the estimation techniques, for the real-time online application. In this study an engine dynamics model based estimation method is proposed. A discrete-time transformed form of a rigid-body crankshaft dynamics model is constructed based on the kinetic energy theorem, as the basis expression for total torque estimation.
Technical Paper

A Simple Diesel Engine Air-Path Model to Predict the Cylinder Charge During Transients: Strategies for Reducing Transient Emissions Spikes

2006-10-16
2006-01-3373
Simple air-path models for modern (VGT/EGR equipped) diesel engines are in common use, and have been reported in the literature. This paper addresses some of the shortcomings of control-oriented models to allow better prediction of the cylinder charge properties. A fast response CO2 analyzer is used to validate the model by comparing the recorded and predicted CO2 concentrations in both the intake port and exhaust manifold of one of the cylinders. Data showing the recorded NOx emissions and exhaust gas opacity during a step change in engine load illustrate the spikes in both NOx and smoke seen during transient conditions. The predicted cylinder charge properties from the model are examined and compared with the measured NOx and opacity. Together, the emissions data and charge properties paint a consistent picture of the phenomena occurring during the transient. Alternative strategies for the fueling and cylinder charge during these load transients are investigated and discussed.
Technical Paper

Simulating a Homogeneous Charge Compression Ignition Engine Fuelled with a DEE/EtOH Blend

2006-04-03
2006-01-1362
We numerically simulate a Homogeneous Charge Compression Ignition (HCCI) engine fuelled with a blend of ethanol and diethyl ether by means of a stochastic reactor model (SRM). A 1D CFD code is employed to calculate gas flow through the engine, whilst the SRM accounts for combustion and convective heat transfer. The results of our simulations are compared to experimental measurements obtained using a Caterpillar CAT3401 single-cylinder Diesel engine modified for HCCI operation. We consider emissions of CO, CO2 and unburnt hydrocarbons as functions of the crank angle at 50% heat release. In addition, we establish the dependence of ignition timing, combustion duration, and emissions on the mixture ratio of the two fuel components. Good qualitative agreement is found between our computations and the available experimental data.
Technical Paper

Premixed Turbulent Combustion Flowfield Measurements Using PIV and LST and Their Application to Flamelet Modelling of Engine Combustion

1992-10-01
922322
Flamelet modelling of premixed turbulent combustion can be applied to spark-ignition engine combustion. To address and validate several modelling criteria, two measurement techniques are used in a burner flame to study the interaction between turbulent flowfields and combustion for subsequent application to engine combustion. Particle Image Velocimetry and Light Sheet Tomography are used together to measure conditional velocities simultaneously in reactant and product mixtures. Correlations of velocity and reaction scalar fluctuations indicate that counter-gradient turbulent diffusion must be accounted for when modelling this flowfield. Comparisons of spatial averaging of instantaneous and ensemble-averaged data are made and the application of similar techniques to engine combustion is discussed.
Technical Paper

Influence of Fuel Additives and Dilution Conditions on the Formation and Emission of Exhaust Particulate Matter from a Direct Injection Spark Ignition Engine

2000-06-19
2000-01-2018
Experiments were performed to measure the number-weighted particle size distributions emitted from a gasoline direct injection (GDI) engine. Measurements were made on a late model vehicle equipped with a direct injection spark ignition engine. The vehicle was placed on a chassis dynamometer, which was used to load the engine to road load at five different vehicle speeds ranging from 15 - 100 km/hr. Dilution of the exhaust aerosol was carried out using a two-stage dilution system in which the first stage dilution occurs as a free jet. Particle size distributions were measured using a TSI 3934 scanning mobility particle sizer. Generally speaking, the presence of the additives did not have a strong, consistent influence on the particle emissions from this engine. The polyether amine demonstrated a reduction in particle number concentration as compared to unadditized base fuel.
Technical Paper

A Turbulent Combustion Model for a Stratified Charged, Spark Ignited Internal Combustion Engine

2000-03-06
2000-01-0275
A turbulent combustion model is described for SI engines with large variations in mixture strength. The model is for a single gas phase fluid at high Reynolds number and treats combustion in the laminar flamelet regime, which is characterized by high Damkholer and low Karlovitz numbers. An assumed probability density function (pdf) approach is used to extract expressions for mean quantities of interest, which are parameterized on the progress variable and mixture fraction variables. A double delta function pdf is used for the reaction progress variable and a beta function pdf is used for the mixture fraction. The reaction rate term in the progress variable equation is closed using an algebraic expression, which incorporates the effects of mixture strength, pressure and temperature on laminar flame speed. The model is implemented in two versions of a Computational Fluid Dynamics (CFD) code.
X