Refine Your Search

Topic

Author

Search Results

Journal Article

Design Optimization of a Series Plug-in Hybrid Electric Vehicle for Real-World Driving Conditions

2010-04-12
2010-01-0840
This paper proposes a framework to perform design optimization of a series PHEV and investigates the impact of using real-world driving inputs on final design. Real-World driving is characterized from a database of naturalistic driving generated in Field Operational Tests. The procedure utilizes Markov chains to generate synthetic drive cycles representative of real-world driving. Subsequently, PHEV optimization is performed in two steps. First the optimal battery and motor sizes to most efficiently achieve a desired All Electric Range (AER) are determined. A synthetic cycle representative of driving over a given range is used for function evaluations. Then, the optimal engine size is obtained by considering fuel economy in the charge sustaining (CS) mode. The higher power/energy demands of real-world cycles lead to PHEV designs with substantially larger batteries and engines than those developed using repetitions of the federal urban cycle (UDDS).
Journal Article

Potential Natural Gas Impact on Cost Efficient Capacity Planning for Automakers and Electricity Generators in a Carbon Constrained World

2015-04-14
2015-01-0466
Greenhouse gas (GHG) emission targets are becoming more stringent for both automakers and electricity generators. With the introduction of plug-in hybrid and electric vehicles, transportation and electricity generation sectors become connected. This provides an opportunity for both sectors to work together to achieve the cost efficient reduction of CO2 emission. In addition, the abundant natural gas (NG) in USA is drawing increased attention from both policy makers and various industries due to its low cost and low carbon content. NG has the potential to ease the pressure from CO2 emission constraints for both the light duty vehicle (LDV) and the electricity generation sectors while simultaneously reducing their fuel costs. To quantify the benefit of this collaboration, an analytical model is developed to evaluate the total societal cost and CO2 emission for both sectors.
Technical Paper

Evaluating the Performance of a Conventional and Hybrid Bus Operating on Diesel and B20 Fuel for Emissions and Fuel Economy

2020-04-14
2020-01-1351
With ongoing concerns about the elevated levels of ambient air pollution in urban areas and the contribution from heavy-duty diesel vehicles, hybrid electric vehicles are considered as a potential solution as they are perceived to be more fuel efficient and less polluting than their conventional engine counterparts. However, recent studies have shown that real-world emissions may be substantially higher than those measured in the laboratory, mainly due to operating conditions that are not fully accounted for in dynamometer test cycles. At the U.S. EPA National Fuel and Vehicle Emissions Laboratory (NVFEL) the in-use criteria emissions and energy efficiency of heavy-duty class 8 vehicles (up to 36280 kg) can be evaluated under controlled conditions in the heavy-duty chassis dynamometer test.
Journal Article

An Erosion Aggressiveness Index (EAI) Based on Pressure Load Estimation Due to Bubble Collapse in Cavitating Flows Within the RANS Solvers

2015-09-06
2015-24-2465
Despite numerous research efforts, there is no reliable and widely accepted tool for the prediction of erosion prone material surfaces due to collapse of cavitation bubbles. In the present paper an Erosion Aggressiveness Index (EAI) is proposed, based on the pressure loads which develop on the material surface and the material yield stress. EAI depends on parameters of the liquid quality and includes the fourth power of the maximum bubble radius and the bubble size number density distribution. Both the newly proposed EAI and the Cavitation Aggressiveness Index (CAI), which has been previously proposed by the authors based on the total derivative of pressure at locations of bubble collapse (DP/Dt>0, Dα/Dt<0), are computed for a cavitating flow orifice, for which experimental and numerical results on material erosion have been published. The predicted surface area prone to cavitation damage, as shown by the CAI and EAI indexes, is correlated with the experiments.
Journal Article

Control Strategies for Power Quantized Solid Oxide Fuel Cell Hybrid Powertrains: In Mobile Robot Applications

2016-04-05
2016-01-0317
This paper addresses scheduling of quantized power levels (including part load operation and startup/shutdown periods) for a propane powered solid oxide fuel cell (SOFC) hybridized with a lithium-ion battery for a tracked mobile robot. The military requires silent operation and long duration missions, which cannot be met by batteries alone due to low energy density or with combustion engines due to noise. To meet this need we consider an SOFC operated at a few discrete power levels where maximum system efficiency can be achieved. The fuel efficiency decreases during transients and resulting thermal gradients lead to stress and degradation of the stack; therefore switching power levels should be minimized. Excess generated energy is used to charge the battery, but when it’s fully charged the SOFC should be turned off to conserve fuel.
Journal Article

Premixed Low Temperature Combustion of Biodiesel and Blends in a High Speed Compression Ignition Engine

2009-04-20
2009-01-0133
The effects of combining premixed, low temperature combustion (LTC) with biodiesel are relatively unknown to this point. This mode allows simultaneously low soot and NOx emissions by using high rates of EGR and increasing ignition delay. This paper compares engine performance and emissions of neat, soy-based methyl ester biodiesel (B100), B20, B50, pure ultra low sulfur diesel (ULSD) and a Swedish, low aromatic diesel in a multi-cylinder diesel engine operating in a late-injection premixed LTC mode. Using heat release analysis, the progression of LTC combustion was explored by comparing fuel mass fraction burned. B100 had a comparatively long ignition delay compared with Swedish diesel when measured by start of ignition (SOI) to 10% fuel mass fraction burned (CA10). Differences were not as apparent when measured by SOI to start of combustion (SOC) even though their cetane numbers are comparable.
Journal Article

Ethanol Detection in Flex-Fuel Direct Injection Engines Using In-Cylinder Pressure Measurements

2009-04-20
2009-01-0657
A method for detection of ethanol content in fuel for an engine equipped with direct injection (DI) is presented. The methodology is based on in-cylinder pressure measurements during the compression stroke and exploits the different charge cooling properties of ethanol and gasoline. The concept was validated using dynamometer data of a 2.0L DI turbocharged engine with variable valve timing (VVT). An algorithm was developed to process the experimental data and generate a residue from the complex cycle-to-cycle in-cylinder pressure evolution which captures the charge cooling effect. The experimental results show that there is a monotonic correlation between the residues and the fuel ethanol percentage in the majority of the cases. However, the correlation varies for different engine operating parameters; such as, speed, load, valve timing, fuel rail pressure, intake and exhaust temperature and pressure.
Journal Article

Frequency Domain Power Distribution Strategy for Series Hybrid Electric Vehicles

2012-04-16
2012-01-1003
Electrification and hybridization have great potential for improving fuel economy and reducing visual signature or soot emissions in military vehicles. Specific challenges related to military applications include severe duty cycles, large and uncertain energy flows through the system and high thermal loads. A novel supervisory control strategy is proposed to simultaneously mitigate severe engine transients and to reduce high electric current in the battery without oversizing the battery. The described objectives are accomplished by splitting the propulsion power demand through filtering in the frequency domain. The engine covers only low frequency power demand profile while the battery covers high frequency components. In the proposed strategy, the separation filter is systematically designed to identify different frequency components with the consideration of fuel consumption, aggressive engine transients, and battery electric loads.
Journal Article

Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

2011-04-12
2011-01-1136
It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil-derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter.
Journal Article

In-Cylinder Particulate Matter and Spray Imaging of Ethanol/Gasoline Blends in a Direct Injection Spark Ignition Engine

2013-04-08
2013-01-0259
A single-cylinder Direct Injection Spark Ignition (DISI) engine with optical access was used to investigate the effects of ethanol/gasoline blends on in-cylinder formation of particulate matter (PM) and fuel spray characteristics. Indolene was used as a baseline fuel and two blends of 50% and 85% ethanol (by volume, balance indolene) were investigated. Time resolved thermal radiation (incandescence/natural luminosity) of soot particles and fuel spray characteristics were recorded using a high speed camera. The images were analyzed to quantify soot formation in units of relative image intensity as a function of important engine operating conditions, including ethanol concentration in the fuel, fuel injection timing (250, 300 and 320° bTDC), and coolant temperature (25°C and 90°C). Spatially-integrated incandescence was used as a metric to quantify the level of in-cylinder PM formed at the different operating conditions.
Technical Paper

Multi-Dimensional Modeling of Natural Gas Ignition Under Compression Ignition Conditions Using Detailed Chemistry

1998-02-23
980136
A detailed chemical kinetic mechanism, consisting of 22 species and 104 elementary reactions, has been used in conjunction with the multi-dimensional reactive flow code KIVA-3 to study autoignition of natural gas injected under compression ignition conditions. Calculations for three different blends of natural gas are performed on a three-dimensional computational grid by modeling both the injection and ignition processes. Ignition delay predictions at pressures and temperatures typical of top-dead-center conditions in compression ignition engines compare well with the measurements of Naber et al. [1] in a combustion bomb. Two different criteria, based on pressure rise and mass of fuel burned, are used to detect the onset of ignition. Parametric studies are conducted to show the effect of additives like ethane and hydrogen peroxide in increasing the fuel consumption rate.
Technical Paper

Influence of Tensioner Friction on Accessory Drive Dynamics

1997-05-20
971962
Belt drives have long been utilized in engine applications to power accessories such as alternators, pumps, compressors and fans. The first belt drives consisted of one or more V-belts powering fixed-centered pulleys and were pre-tensioned by statically adjusting the pulley center separation distances. In recent years, such drives have been replaced by a single, flat, ‘serpentine belt’ tensioned by an ‘automatic tensioner.’ The automatic tensioner consists of a spring-loaded, dry friction damped, tensioner arm that contacts the belt through an idler pulley. The tensioner's major function is to maintain constant belt tension in the presence of changing engine speeds and accessory loads. The engine crankshaft supplies both the requisite power to drive the accessories as well as the (unwanted) dynamic excitation that can adversely affect the accessories and the noise and vibration performance of the belt.
Technical Paper

Digital Human Modeling Goals and Strategic Plans

2008-06-17
2008-01-1933
Digital human modeling (DHM) progress worldwide will be much faster and cohesive if the diverse community now developing simulations has a global blueprint for DHM, and is able to work together efficiently. DHM developers and users can save time by building on each other's work. This paper highlights a panel discussion on DHM goals and strategic plans for the next decade to begin formulating the international blueprint. Four subjects are chosen as the starting points: (1) moving DHM into the public safety and internet arenas, (2) role of DHM in computer assisted surgery and automotive safety, (3) DHM in defense applications, and (4) DHM to improve workplace ergonomics.
Technical Paper

Influence of Object Properties on Reaching and Grasping Tasks

2008-06-17
2008-01-1905
This paper investigates how reaching and grasping are affected by various object properties and conditions. While previous studies have examined the effect of object attributes such as size, shape, and distance from the subject, there is a need for quantitative models of finger motions. To accomplish this, the experiment was performed with six subjects where the 3D-coordinates of the finger joints and the wrist of one hand were recorded during reaching and grasping tasks. Finger joint angles at final posture were found to depend on both object size and orientation while wrist postures were changed primarily depending on object orientation. Also, each object orientation caused alteration in relative object location with respect to the hand at final posture. In addition, analysis of temporal variables revealed that it took from 1.06 to 1.30 seconds depending on the object distance to start reaching and complete grasping of the object.
Technical Paper

Efficient Batteries for Transportation Applications

2008-10-20
2008-21-0017
This paper reviews and analyzes the current and future battery technologies suitable for transportation applications. The success of battery-enabled hybridization of gasoline and diesel power-trains in the past decade has clearly established it as the most credible alternative to the conventional propulsion systems. The current enthusiasm for electric vehicles further accentuates this success. In this paper, we compare the performance of a number of established and emerging battery technologies against the now well-established performance targets for electric-drive vehicles. Lithium-ion cells' superior performance and life are described, as are requirements for supplantation of NiMH cells in vehicles. Trends are discussed in technology development, which has largely been achieved through insertion of Li technologies in consumer electronics. Recent developments have given rise to several variants of the Li ion chemistry.
Technical Paper

Simulation Based Assessment of Plug-in Hybrid Electric Vehicle Behavior During Real-World 24-Hour Missions

2010-04-12
2010-01-0827
This paper proposes a simulation based methodology to assess plug-in hybrid vehicle (PHEV) behavior over 24-hour periods. Several representative 24-hour missions comprise naturalistic cycle data and information about vehicle resting time. The data were acquired during Filed Operational Tests (FOT) of a fleet of passenger vehicles carried out by the University of Michigan Transportation Research Institute (UMTRI) for safety research. Then, PHEV behavior is investigated using a simulation with two different charging scenarios: (1) Charging overnight; (2) Charging whenever possible. Charging/discharging patterns of the battery as well as trends of charge depleting (CD) and charge sustaining (CS) modes at each scenario were assessed. Series PHEV simulation is generated using Powertrain System Analysis Toolkit (PSAT) developed by Argonne National Laboratory (ANL) and in-house Matlab codes.
Technical Paper

A Feasible CFD Methodology for Gasoline Intake Flow Optimization in a HEV Application - Part 2: Prediction and Optimization

2010-10-25
2010-01-2238
Today's engine and combustion process development is closely related to the intake port layout. Combustion, performance and emissions are coupled to the intensity of turbulence, the quality of mixture formation and the distribution of residual gas, all of which depend on the in-cylinder charge motion, which is mainly determined by the intake port and cylinder head design. Additionally, an increasing level of volumetric efficiency is demanded for a high power output. Most optimization efforts on typical homogeneous charge spark ignition (HCSI) engines have been at low loads because that is all that is required for a vehicle to make it through the FTP cycle. However, due to pumping losses, this is where such engines are least efficient, so it would be good to find strategies to allow the engine to operate at higher loads.
Technical Paper

Plasma-Facilitated SCR of NOx in Heavy-Duty Diesel Exhaust

2001-09-24
2001-01-3570
This paper describes two independent studies on γ-alumina as a plasma-activated catalyst. γ-alumina (2.5 - 4.3 wt%) was coated onto the surface of mesoporous silica to determine the importance of aluminum surface coordination on NOx conversion in conjunction with nonthermal plasma. Results indicate that the presence of 5- and 6- fold aluminum coordination sites in γ-alumina could be a significant factor in the NOx reduction process. A second study examined the effect of changing the reducing agent on NOx conversion. Several hydrocarbons were examined including propene, propane, isooctane, methanol, and acetaldehyde. It is demonstrated that methanol was the most effective reducing agent of those tested for a plasma-facilitated reaction over γ-alumina.
Technical Paper

Near-Term Fuel Economy Potential for Light-Duty Trucks

2002-06-03
2002-01-1900
This paper assesses the technical potential, costs and benefits of improving the fuel economy of light-duty trucks over the next five to ten years in the United States using conventional technologies. We offer an in-depth analysis of several technology packages based on a detailed vehicle system modeling approach. Results are provided for fuel economy, cost, oil savings and reductions in greenhouse gas emissions. We examine a range of refinements to body, powertrain and electrical systems, reflecting current best practice and emerging technologies such as lightweight materials, high-efficiency IC engines, integrated starter-generator, 42 volt electrical system and advanced transmission. In this paper, multiple technological pathways are identified to significantly improve fleet average light-duty-truck fuel economy to 27.0 MPG or higher with net savings to consumers.
Technical Paper

Experimental and Simulated Results Detailing the Sensitivity of Natural Gas HCCI Engines to Fuel Composition

2001-09-24
2001-01-3609
Natural gas quality, in terms of the volume fraction of higher hydrocarbons, strongly affects the auto-ignition characteristics of the air-fuel mixture, the engine performance and its controllability. The influence of natural gas composition on engine operation has been investigated both experimentally and through chemical kinetic based cycle simulation. A range of two component gas mixtures has been tested with methane as the base fuel. The equivalence ratio (0.3), the compression ratio (19.8), and the engine speed (1000 rpm) were held constant in order to isolate the impact of fuel autoignition chemistry. For each fuel mixture, the start of combustion was phased near top dead center (TDC) and then the inlet mixture temperature was reduced. These experimental results have been utilized as a source of data for the validation of a chemical kinetic based full-cycle simulation.
X