Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Touch Feel and Appearance Characteristics of Automotive Door Armrest Materials

2007-04-16
2007-01-1217
This paper presents results of a five phase study conducted to evaluate touch feel and appearance of door armrest materials. Seven different production door armrests with different material characteristics such as softness, smoothness, compressibility, texture, etc. were evaluated. In the first phase, the subjects seated in a vehicle buck in their preferred seating position with the armrests adjusted at their preferred heights, provided ratings on a number of touch feel and appearance of the door armrest materials using 5-point semantic differential scales. In the second phase, the armrests were presented to each subject in all possible pairs and they were asked to select preferred armrest material in each pair.
Technical Paper

Effect of Vehicle Body Style on Vehicle Entry/Exit Performance and Preferences of Older and Younger Drivers

2002-03-04
2002-01-0091
This paper presents results of a study conducted to determine differences in older (over age 55) and younger (under age 35), male and female drivers while entering and exiting vehicles with three different body styles - namely, a large sedan, a minivan and a full-size pick-up truck. Thirty-six drivers (males and females, ages 25 to 89 years) who participated in this study were first measured for their anthropometric, strength and body flexibility measures relevant to the entry/exit tasks. They were asked to first get in each vehicle and adjust their preferred seating position. Then, they were asked to get in the vehicle and their entry time was measured. Their entry maneuver was also video taped and they were asked to rate the level of ease/difficulty (using a 5-point scale) in entering. Similar procedure and measurements were conducted during their exit from each vehicle.
Technical Paper

Towards Development of a Methodology to Measure Perception of Quality of Interior Materials

2005-04-11
2005-01-0973
The automotive interior suppliers are challenged to develop materials, that not only perform functionally, but also provide the right combination sensory experience (e.g. visual appeal, tactile feeling) and brand differentiation at very competitive costs. Therefore, the objective of this research presented in this paper is to develop a methodology that can be used to measure customer perception of interior materials and to come up with a unique system for assessing value of different interior materials. The overall methodology involves the application of a number of psychophysical measurement methods (e.g. Semantic Differential Scaling) and statistical methods to assess: 1) overall customer perceived quality of materials, 2) elements (or attributes) of perception, and 3) value of materials from OEM's viewpoint in terms of the measurement of perception of quality divided by a measure of cost.
Journal Article

Predicting Effects of Veiling Glare Caused by Instrument Panel Reflections in the Windshields

2008-04-14
2008-01-0666
This paper presents quantitative effects of windshield veiling glare on the visibility of targets based on a two part research project. The first part involved measurement and modeling of luminance of veiling glare caused by the reflection of different instrument panel materials under range of conditions defined by combination of windshield angle, instrument panel angle, and sun angle. In the second part, the veiling glare model was incorporated in a visibility prediction model based on visual contrast threshold data. A critical visibility condition of a driver approaching a tunnel with the sunlight falling on his windshield and attempting to detect a target inside the tunnel was studied by conducting sensitivity analyses. The sensitivity analysis showed that a 2 ft diameter 10% reflectance target illuminated by 5000 lux of lighting inside a tunnel visibility distances can be seen from 0 to 3,000 feet depending upon driver's age, vehicle design parameters and sun illumination levels.
Journal Article

Determining Perceptual Characteristics of Automotive Interior Materials

2009-04-20
2009-01-0017
This paper presents results of a three-phase research project aimed at understanding how future automotive interior materials should be selected or designed to satisfy the needs of the customers. The first project phase involved development of 22 five-point semantic differential scales to measure visual, visual-tactile, and evaluative characteristics of the materials. Some examples of the adjective pairs used to create the semantic differential scales to measure the perceptual characteristics of the material are: a) Visual: Light vs. Dark, Flat vs. Shiny, etc., b) Visual-Tactile: Smooth vs. Rough, Slippery vs. Sticky, Compressive vs. Non-Compressive, Textured vs. Non-Textured, etc., c) Evaluative (overall perception): Dislike vs. Like, Fake vs. Genuine, Cheap vs. Expensive, etc. In the second phase, 12 younger and 12 older drivers were asked to evaluate a number of different automotive interior materials by using the 22 semantic differential scales.
X