Refine Your Search

Topic

Author

Search Results

Journal Article

Modeling Forming Limit in Low Stress Triaxiality and Predicting Stretching Failure in Draw Simulation by an Improved Ductile Failure Criterion

2018-04-03
2018-01-0801
A ductile failure criterion (DFC), which defines the stretching failure at localized necking (LN) and treats the critical damage as a function of strain path and initial sheet thickness, was proposed in a previous study. In this study, the DFC is revisited to extend the model to the low stress triaxiality domain and demonstrates on modeling forming limit curve (FLC) of TRIP 690. Then, the model is used to predict stretching failure in a finite element method (FEM) simulation on a TRIP 690 steel rectangular cup draw process at room temperature. Comparison shows that the results from this criterion match quite well with experimental observations.
Technical Paper

Prediction and Experimental Validation of Path-Dependent Forming Limit Diagrams of VDIF Steel

1998-02-23
980079
Strains in most stamped parts are produced under non-proportional loading. Limit strains induced during forming are, therefore, path dependent. Experimental Forming Limit Diagrams (FLDs) are usually determined under proportional loading and are not applicable to most forming operations. Experimental results have shown that path dependent FLDs are different from those determined under proportional loading. A number of analytical methods have been used to predict FLDs under proportional loading. The authors have recently introduced a new method for predicting FLDs based on the theory of damage mechanics. The damage model was used successfully to predict proportional FLDs for VDIF steel and Al6111-T4. In this paper, the anisotropic damage model was used to predict non-proportional FLDs for VDIF steel. Experiments were conducted to validate model predictions by applying pre-stretch in plane strain followed by uniaxial and balanced biaxial tension.
Technical Paper

Prestrain Effect on Fatigue of DP600 Sheet Steel

2007-04-16
2007-01-0995
The component being formed experiences some type of prestrain that may have an effect on its fatigue strength. This study investigated the forming effects on material fatigue strength of dual phase sheet steel (DP600) subjected to various uniaxial prestrains. In the as-received condition, DP600 specimens were tested for tensile properties to determine the prestraining level based on the uniform elongation corresponding to the maximum strength of DP600 on the stress-strain curve. Three different levels of prestrain at 90%, 70% and 50% of the uniform elongation were applied to uniaxial prestrain specimens for tensile tests and fatigue tests. Fatigue tests were conducted with strain controlled to obtain fatigue properties and compare them with the as-received DP600. The fatigue test results were presented with strain amplitude and Neuber's factor.
Technical Paper

Touch Feel and Appearance Characteristics of Automotive Door Armrest Materials

2007-04-16
2007-01-1217
This paper presents results of a five phase study conducted to evaluate touch feel and appearance of door armrest materials. Seven different production door armrests with different material characteristics such as softness, smoothness, compressibility, texture, etc. were evaluated. In the first phase, the subjects seated in a vehicle buck in their preferred seating position with the armrests adjusted at their preferred heights, provided ratings on a number of touch feel and appearance of the door armrest materials using 5-point semantic differential scales. In the second phase, the armrests were presented to each subject in all possible pairs and they were asked to select preferred armrest material in each pair.
Technical Paper

PEM Fuel Cell Stack Characterization and its Integration in Simulating a Fuel Cell Powertrain

2008-06-23
2008-01-1796
Fuel cell based powertrains are considered as potential candidates for future vehicles. Modeling of vehicle powertrains, using a combination of components and energy storage media, are widely used to predict vehicle performances under different duty cycles. This paper deals with performance analysis of a light-duty vehicle comprised of a PEM fuel cell stack, in combination with different energy storage systems using Powertrain Simulation Analysis Toolkit (PSAT). The performance of the stack was characterized by experimental data on a smaller PEM stack and was used in the simulation. The stack data was collected at controlled loading and thermal parameters. Three energy storage systems are considered in the analysis: nickel metal hydride battery storage, lithium-ion battery storage and ultra capacitor energy storage. The simulation results were analyzed for comparative evaluations and to optimize the performance of the fuel cell powertrain configurations.
Technical Paper

The Electric Drive of a Tram with an Average Floor

2008-06-23
2008-01-1828
The urban trams with a low floor are more convenient for the passengers, and with a high floor - more cheaply and more technologically during manufacturing and operation. The combined advantages those and others in themselves are trams with average height of a floor, but for this purpose it is necessary to lower height of tram carriages, that is reached by application of electric motors with a small stator external diameter. It is offered in this the perspective electric drive on the base of the synchronous motor with independent excitation. The salient rotor poles of the motor do not contain windings. The motors stator is carried out on the base of the stator body of regular AC electric motor. The multiphase winding is located in the stator. A winding section, which conductors settle down above the between rotor poles, carry out a role of the excitation winding, and others, which conductors lay above poles, - a role of the armature winding.
Technical Paper

Spot Friction Welding of Mg-Mg, Al-Al and Mg-Al Alloys

2008-04-14
2008-01-0144
Spot friction welding is considered a cost-effective method for joining lightweight automotive alloys, such as magnesium and aluminum alloys. An experimental study was conducted to investigate the strength of spot friction welded joints of magnesium to magnesium, aluminum to aluminum, magnesium to aluminum and aluminum to magnesium. The joint structures and failure modes were also studied.
Technical Paper

Characterization of Exhaust Emissions in a SI Engine using E85 and Cooled EGR

2009-06-15
2009-01-1952
Gasoline-ethanol blends are being used or have been considered as a fuel for spark ignition engines. The motivation for using the blends varies in indifferent parts of the world and even in regions within a country. The increasing cost of gasoline, combined with regional tax incentives, is one of the reasons for increased interests in gasoline-ethanol blends in recent years in the U.S. Many vehicular engines are not designed to use a specific gasoline-ethanol blend. Rather, the engines have multi-blend capability, ranging from E0 to about E85. It is plausible that engine-out emissions will vary depending on the blend being used which may be further impacted by the level of EGR used with the blends. The present work was carried out to investigate engine out emissions when a vehicular spark-ignition engine was operated on E0 and E85 and different levels of EGR. A 4-cylinder, 2.5 liter, PFI engine was used in the experimental investigation.
Technical Paper

LS-DYNA3D Simulation of Sheet Metal Forming using Damage Based User Subroutine

2001-03-05
2001-01-1129
LS-DYNA3D has been widely used to perform computer simulation of sheet metal forming. In the material library of LS-DYNA3D there are a number of user defined material models. In order to take full advantage of the material subroutines, it is important for the users to be able to display user defined history variables in the post processing and to establish user-defined failure criterion. In this report, the development of a damage coupled plastic model is firstly described. The damage model is then programmed in a user defined material subroutine. This is followed by performing finite element simulation of sheet metal forming with the LS-DYNA3D that has incorporated the damage coupled plastic model. The way to display the user defined history variables and how to deal with the failure criterion during the postprocessing of ETA/DYNAFORM are described. History variable distributions at several time steps are displayed and discussed in this paper.
Technical Paper

Characteristics of High-Pressure Spray and Exhaust Emissions in a Single- Cylinder Di Diesel Engine

2000-06-12
2000-05-0333
Regulations on exhaust emissions from light- and heavy-duty diesel engines have generated interest in high-pressure fuel injection systems. It has been recognized that high-pressure injection systems produce fuel sprays that may be more conductive to reducing exhaust emissions in direct-injection diesel engines. However, for such a system to be effective it must be matched carefully with the engine design and its operating parameters. A common-rail type of fuel injection system was investigated in the present study. The injection system utilizes an intensifier to generate injection pressures as high as 160 MPa. The fuel spray characteristics were evaluated on a test bench in a chamber containing pressurized nitrogen gas. The injection system was then incorporated in a single-cylinder diesel engine. The injection system parameters were adjusted to match engine specifications and its operating parameters.
Technical Paper

A Case Study in Remote Connectivity to Automotive Communication Networks

2001-03-05
2001-01-0069
This paper describes a case study led by Science Applications International Corporation (SAIC) of Dayton, OH USA and Dearborn Group Inc. to prove the feasibility of employing Telematics technologies to the vehicle test and measurement industry. Many test functions can be automated through the use of secure wireless technologies. For example, vehicle data can be dynamically monitored on the vehicle and data meeting pre-determined criteria could be downloaded via the wireless communications center. Additionally, central, real-time wireless monitoring of vehicle fleets provides the vehicle fleet manager with the ability to manage multiple tests simultaneously, thus improving efficiencies and potentially reducing manpower costs and compressing test schedules.
Technical Paper

Interior Design Process for UM-D's Low Mass Vehicle

2004-03-08
2004-01-1709
This paper describes a unique interior design and multidisciplinary process implemented by the faculty and students to develop the interior for a Low Mass Vehicle (LMV). The 103 inch LMV was designed with the goal of about 30% reduction in weight than a typical class C segment vehicle and would require low investment in manufacturing. In the early stages of the program, the UM-Dearborn team developed detailed requirements of the vehicle interior based on the vehicle's exterior developed using a similar process. The requirements were given to a senior class of automotive design students from the College of Creative Studies in Detroit to create different interior design themes. Approximately twenty-five interior design themes were judged by a panel of automotive industry experts, and a winning design was selected.
Technical Paper

A Comparison of Burn Characteristics and Exhaust Emissions from Off-Highway Engines Fueled by E0 and E85

2004-01-16
2004-28-0045
Ethanol fuel has received renewed attention in recent years because of its oxygenate content and its potential to reduce greenhouse gas emissions from spark ignition engines. The economic impact on farm industry has been one of the drivers for its use in engines in the U.S. Although ethanol, in various blends, has been used in automotive engines for almost a decade the fuel has seldom been utilized in off-highway engines where the fuel systems are not well controlled. This investigation was conducted to evaluate exhaust emissions and combustion characteristics of E85 fuel in an off-highway engine used in farm equipment. A single-cylinder, four-stroke, spark ignition engine equipped with a carburetor was used to investigate combustion and exhaust emissions produced by gasoline and blends of gasoline and ethanol fuels. The engine fuel system was modified to handle flow rates required by the engine. A variable size-metering orifice was used to control air-to-fuel ratios.
Technical Paper

Cost-Benefit Analysis of Thermoplastic Matrix Composites for Structural Automotive Applications

2002-06-03
2002-01-1891
This paper presents cost-benefit analysis of glass and carbon fiber reinforced thermoplastic matrix composites for structural automotive applications based on press forming operation. Press forming is very similar to stamping operation for steel. The structural automotive applications involve beam type components. The part selected for a case study analysis is a crossbeam support for instrument panels.
Technical Paper

The Application of Middleware to In-Vehicle Applications

2002-03-04
2002-01-0264
With the increasing presence of the Internet in today's applications, ranging from legacy enterprise systems to handheld devices and home appliances, there is an increasing need for a generic middleware that can enable the interoperability between heterogeneous systems. In the specific case of in-vehicle networks, a generic middleware would enable the vehicle/driver to interact with a diversity of applications, including legacy enterprise systems, other embedded systems and wireless ad-hoc and ubiquitous applications. This paper is the result of an initial investigation into the requirements for such a middleware, and possible directions to be taken for its implementation.
Technical Paper

Combustion Variability in Natural Gas Fueled Engines

2003-05-19
2003-01-1935
A study was conducted to investigate combustion variability and exhaust emissions from high-speed, natural gas fueled engines. Two types of fuel systems were used in the investigation: a mixer and a port fuel injection. The overall engine performances were not much different at stoichiometric fuel-air ratio. But as the equivalence ratio was reduced the engine with the mixer produced higher levels of hydrocarbons and larger coefficient of variations in imep. The same engine exhibited longer flame development angle and rapid burn duration in comparison to the fuel injected engine. The differences in burn durations increased as the equivalence ratio decreased and the mixer system produced larger variations in their values at these operating points. The investigation showed the performance of the engine was better with natural gas injection system than with the mixer, particularly at lean equivalence ratios.
Technical Paper

A Structural Stress Recovery Procedure for Fatigue Life Assessment of Welded Structures

2017-03-28
2017-01-0343
Over the decades, several attempts have been made to develop new fatigue analysis methods for welded joints since most of the incidents in automotive structures are joints related. Therefore, a reliable and effective fatigue damage parameter is needed to properly predict the failure location and fatigue life of these welded structures to reduce the hardware testing, time, and the associated cost. The nodal force-based structural stress approach is becoming widely used in fatigue life assessment of welded structures. In this paper, a new nodal force-based structural stress recovery procedure is proposed that uses the least squares method to linearly smooth the stresses in elements along the weld line. Weight function is introduced to give flexibility in choosing different weighting schemes between elements. Two typical weighting schemes are discussed and compared.
Technical Paper

Predicting Forming Limit Curve Using a New Ductile Failure Criterion

2017-03-28
2017-01-0312
Based on findings from micromechanical studies, a Ductile Failure Criterion (DFC) was proposed. The proposed DFC treats localized necking as failure and critical damage as a function of strain path and initial sheet thickness. Under linear strain path assumption, a method to predict Forming Limit Curve (FLC) is derived from this DFC. With the help of predetermined effect functions, the method only needs a calibration at uniaxial tension. The approach was validated by predicting FLCs for sixteen different aluminum and steel sheet metal materials. Comparison shows that the prediction matches quite well with experimental observations in most cases.
Technical Paper

The Multiobjective Optimal Design Problems and their Pareto Optimal Fronts for Li-Ion Battery Cells

2016-04-05
2016-01-1199
This paper begins with a baseline multi-objective optimization problem for the lithium-ion battery cell. Maximizing the energy per unit separator area and minimizing the mass per unit separator area are considered as the objectives when the thickness and the porosity of the positive electrode are chosen as design variables in the baseline problem. By employing a reaction zone model of a Graphite/Iron Phosphate Lithium-ion Cell and the Genetic Algorithm, it is shown the shape of the Pareto optimal front for the formulated optimization takes a convex form. The identified shape of the Pareto optimal front is expected to guide Design of Experiments (DOE) and product design. Compared with the conventional studies whose optimizations are based on a single objective of maximizing the specific energy, the proposed multi-objective optimization approach offers more flexibility to the product designers when trade-off between conflicting objectives is required.
Technical Paper

A Modular Designed Three-phase ~98%-Efficiency 5kW/L On-board Fast Charger for Electric Vehicles Using Paralleled E-mode GaN HEMTs

2017-03-28
2017-01-1697
Most of the present electric vehicle (EV) on-board chargers utilize a conventional design, i.e., a boost-type Power Factor Correction (PFC) controller followed by an isolated DC/DC converter. Such design usually yields a ~94% wall-to-battery efficiency and 2~3kW/L power density at most, which makes a high-power charger, e.g., 20kW module difficult to fit in the vehicle. As described in this paper, first, an E-mode GaN HEMT based 7.2kW single-phase charger was built. Connecting three such modules to the three-phase grid allows a three-phase >20kW charger to be built, which compared to the conventional three-phase charger, saves the bulky DC-bus capacitor by using the indirect matrix converter topology. To push the efficiency and power density to the limit, comprehensive optimization is processed to optimize the single-phase module through incorporating the GaN HEMT switching performance and securing its zero-voltage switching.
X