Refine Your Search

Topic

Author

Search Results

Journal Article

Late Intake Valve Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level

2008-04-14
2008-01-0637
A fully flexible valve actuation (FFVA) system was developed for a single cylinder research engine to investigate high efficiency clean combustion (HECC) in a diesel engine. The main objectives of the study were to examine the emissions, performance, and combustion characteristics of the engine using late intake valve closing (LIVC) to determine the benefits and limitations of this strategy to meet Tier 2 Bin 5 NOx requirements without after-treatment. The most significant benefit of LIVC is a reduction in particulates due to the longer ignition delay time and a subsequent reduction in local fuel rich combustion zones. More than a 95% reduction in particulates was observed at some operating conditions. Combustion noise was also reduced at low and medium loads due to slower heat release. Although it is difficult to assess the fuel economy benefits of LIVC using a single cylinder engine, LIVC shows the potential to improve the fuel economy through several approaches.
Journal Article

A Bayesian Approach to Cross-Validation in Pedestrian Accident Reconstruction

2011-04-12
2011-01-0290
In statistical modeling, cross-validation refers to the practice of fitting a model with part of the available data, and then using predictions of the unused data to test and improve the fitted model. In accident reconstruction, cross-validation is possible when two different measurements can be used to estimate the same accident feature, such as when measured skidmark length and pedestrian throw distance each provide an estimate of impact speed. In this case a Bayesian cross-validation can be carried out by (1) using one measurement and Bayes theorem to compute a posterior distribution for the impact speed, (2) using this posterior distribution to compute a predictive distribution for the second measurement, and then (3) comparing the actual second measurement to this predictive distribution. An actual measurement falling in an extreme tail of the predictive distribution suggests a weakness in the assumptions governing the reconstruction.
Technical Paper

Data-Driven Framework for Fuel Efficiency Improvement in Extended Range Electric Vehicle Used in Package Delivery Applications

2020-04-14
2020-01-0589
Extended range electric vehicles (EREVs) are a potential solution for fossil fuel usage mitigation and on-road emissions reduction. The use of EREVs can be shown to yield significant fuel economy improvements when proper energy management strategies (EMSs) are employed. However, many in-use EREVs achieve only moderate fuel reduction compared to conventional vehicles due to the fact that their EMS is far from optimal. This paper focuses on in-use rule-based EMSs to improve the fuel efficiency of EREV last-mile delivery vehicles equipped with two-way Vehicle-to-Could (V2C) connectivity. The method uses previous vehicle data collected on actual delivery routes and machine learning methods to improve the fuel economy of future routes. The paper first introduces the main challenges of the project, such as inherent uncertainty in human driver behavior and in the roadway environment. Then, the framework of our practical physics-model guided data-driven approach is introduced.
Technical Paper

Person to Person Biological Heat Bypass During EVA Emergencies

2007-07-09
2007-01-3209
During EVA and other extreme environments, mutual human support is sometimes the last way to survive when there is a failure of the life support equipment. The possibility to transfer a warming fluid from one individual to another to increase heat and support the thermal balance of the individual with system failure was assessed. The following analog scenarios were considered: 1. one subject has a cooling system that is not working well and already has a body heat deficit equal to 100-120 kcal and a finger temperature decline to 26-27ºC, the other subject is at comfort level; 2. one subject is overcooled due to system failure and the other is mildly overheated. Preliminary findings showed promise in using such thermal sharing tactics to extend the time duration of survival in extreme situations when there is an increased metabolic rate in the donor.
Technical Paper

Forced and Directed Heat Exchange for Providing Human Body Comfort in Extreme Environments

1997-07-01
972318
A new methodological tool was developed consisting of a patchwork thermal cool/warm grid with great flexibility to manipulate the temperature on different areas of the body. Through conflicting temperatures on the body surface, it is possible to direct heat current to different distal or proximal areas. The effectiveness of the use of a cooled hood, gloves, socks on the overheated body was evaluated as countermeasures for balancing heat exchange. Temperature in the magistral vessels was the main source of information for understanding the mechanism of the relationship between core and shell, and shell and distal parts of the limb.
Technical Paper

Body Surface Temperature Tuning as a Comfort Support System in Space and Other Extreme Environments

1998-07-13
981723
The potential of controlling human body thermal status through monitoring temperature and heat flux indices of the fingers was evaluated. A cooling/warming suit was used that provided a range of uniform and nonuniform temperature regimes on the body surface. Temperature changes on the skin surface changed body comfort significantly but did not affect core temperature. However, under different imposed thermal conditions, peripheral temperature, particularly the fingers, closely followed the thermal conditions either within or on the surface of the body. The fingers appear to have considerable potential as a key site in developing an automatic thermal feedback system in the EVA suit.
Technical Paper

The Lunar-Mars Life Support Test Project Phase III 90-day Test: The Crew Perspective

1998-07-13
981702
The Lunar-Mars Life Support Test Project (LMLSTP) Phase III test examined the use of biological and physicochemical life support technologies for the recovery of potable water from waste water, the regeneration of breathable air, and the maintenance of a shirt-sleeve environment for a crew of four persons for 91 days. This represents the longest duration ground-test of life support systems with humans performed in the United States. This paper will describe the test from the inside viewpoint, concentrating on three major areas: maintenance and repair of life support elements, the scientific projects performed primarily in support of the International Space Station, and numerous activities in the areas of public affairs and education outreach.
Technical Paper

Trade Study of an Exploration Cooling Garment

2008-06-29
2008-01-1994
A trade study was conducted with a goal to develop relatively high TRL design concepts for an Exploration Cooling Garment (ExCG) that can accommodate larger metabolic loads and maintain physiological limits of the crewmembers health and work efficiency during all phases of exploration missions without hindering mobility. Effective personal cooling through use of an ExCG is critical in achieving safe and efficient missions. Crew thermoregulation not only impacts comfort during suited operations but also directly affects human performance. Since the ExCG is intimately worn and interfaces with comfort items, it is also critical to overall crewmember physical comfort. Both thermal and physical comfort are essential for the long term, continuous wear expected of the ExCG.
Technical Paper

Cooling and Thermal Control Strategies in the Space Suit for Routine and Emergency Situations

2008-06-29
2008-01-1993
A series of demonstration studies were conducted with the aim of better understanding how to regulate body heat and thus enhance thermal comfort of astronauts during EVA requiring intensive physical exertion. The first study evaluated body zone heat transfer under different cooling temperatures in a liquid cooling garment (LCG), confirming the effectiveness of areas with high density tissue. The second study evaluated different configurations of hoods and neck scarves to maximize heat extraction from these key areas for heat release. The third study explored the possibility of regulating body heat by control of the water temperature circulating through selected body zones in the LCG, or blocking heat dissipation from particular body areas. The potential of heat insertion/removal from the head, hands, and feet to stabilize body comfort was evaluated in terms of the ability to advance this heat current “highway” from the core.
Technical Paper

Derivation of Boundary Manikins: A Principal Component Analysis

2008-06-17
2008-01-1879
When designing any human-system interface, it is critical to provide realistic anthropometry to properly represent how a person fits within a given space. This study aimed to identify a minimum number of ‘boundary manikins’ or representative models of subjects' anthropometry from a target population, which would realistically represent the population. The boundary manikin anthropometry was derived using, Principal Component Analysis (PCA). PCA is a statistical approach to reduce a multi-dimensional dataset using eigenvectors and eigenvalues. The measurements used in the PCA were identified as those measurements critical for space suit and cockpit design. The PCA yielded a total of 26 manikins per gender, as well as their anthropometry from the target population. Reduction techniques were implemented to reduce this number further with a final result of 20 female and 22 male subjects.
Technical Paper

International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Water Recovery and Management Subsystems

2008-06-29
2008-01-2183
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 ECLS WRM subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for that subsystem.
Technical Paper

International Space Station Environmental Control and Life Support System Changes for Increasing the ISS Crew Size to Six Crew Members and for Shuttle Retirement

2008-06-29
2008-01-2178
With the long anticipated change to increase the International Space Station (ISS) crew size from three to six crew members and the retirement of the Space Shuttle, changes are in work to the International Space Station (ISS) Environmental Control and Life Support (ECLS) System to support the increased on-orbit crew size and their continued operations. The Space Shuttle had provided high pressure oxygen resupply, high pressure nitrogen resupply, water resupply, atmosphere gaseous make up when the Space Shuttle is docked to ISS, and logistic cargo supply/return capability to ISS. Without the Space Shuttle additional changes need to be made to the ISS ECLS System to support the six crew members post Assembly Complete (AC). This will be in addition to the changes that were needed to support doubling the nominal ISS crew size from three to six crew members.
Technical Paper

International Space Station Environmental Control and Life Support System Acceptance Testing for the Pressurized Mating Adapters

2008-06-29
2008-01-2182
The International Space Station (ISS) Pressurized Mating Adapters (PMAs) Environmental Control and Life Support (ECLS) System is comprised of three subsystems: Atmosphere Control and Supply (ACS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). PMAs 1 and 2 flew to ISS on Flight 2A and Pressurized Mating Adapter (PMA) 3 flew to ISS on Flight 3A. This paper provides a summary of the PMAs ECLS design and a detailed discussion of the ISS ECLS Acceptance Testing methodologies utilized for the PMAs.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2007 - 2008

2008-06-29
2008-01-2131
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2007 and February 2008. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
Technical Paper

Project Orion, Environmental Control and Life Support System Integrated Studies

2008-06-29
2008-01-2086
Orion is the next vehicle for human space travel. Humans will be sustained in space by the Orion subystem, environmental control and life support (ECLS). The ECLS concept at the subsystem level is outlined by function and technology. In the past two years, the interface definition with other subsystems has increased through different integrated studies. The paper presents the key requirements and discusses three recent studies (e.g., unpressurized cargo) along with the respective impacts on the ECLS design moving forward.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2008 – 2009

2009-07-12
2009-01-2415
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2008 and February 2009. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.
Technical Paper

Development of a Prototype Water Pump for Future Space Suit Applications

2009-07-12
2009-01-2450
NASA's next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew's liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories.
Technical Paper

Subjective Perception of Thermal and Physical Comfort in Three Liquid Cooling Garments

2009-07-12
2009-01-2516
The subjective aspects of comfort in three different cooling garments, the MACS-Delphi, Russian Orlan, and LCVG were evaluated. Six subjects (4 males and 2 females) were tested in separate sessions in each garment and in one of two environmental chamber conditions: 24°C and 35°C. Subjects followed a staged exercise/rest protocol with different levels of physical exertion at different stages. Thermal comfort and heat perception were assessed by ratings on visual analog scales. Ratings of physical comfort of the garment and also garment flexibility in positions simulating movements during planetary exploration were also obtained. The findings indicated that both overall thermal comfort and head thermal comfort were rated highest in the MACS-Delphi at 24°C. The Orlan was rated lowest on physical comfort and less flexible in different body positions.
Technical Paper

Creating a Lunar EVA Work Envelope

2009-07-12
2009-01-2569
A work envelope has been defined for weightless Extravehicular Activity (EVA) based on the Space Shuttle Extravehicular Mobility Unit (EMU), but there is no equivalent for planetary operations. The weightless work envelope is essential for planning all EVA tasks because it determines the location of removable parts, making sure they are within reach and visibility of the suited crew member. In addition, using the envelope positions the structural hard points for foot restraints that allow placing both hands on the job and provides a load path for reacting forces. EVA operations are always constrained by time. Tasks are carefully planned to ensure the crew has enough breathing oxygen, cooling water, and battery power. Planning first involves computers using a virtual work envelope to model tasks, next suited crew members in a simulated environment refine the tasks.
Technical Paper

International Space Station Environmental Control and Life Support System Status: 2002 – 2003

2003-07-07
2003-01-2589
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between April 2002 and March 2003. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence. Work continued on the Phase 3 pressurized elements with Node 3 just completing its final design review so that it can proceed towards manufacturing and the continued manufacturing of the regenerative ECLS equipment that will be integrated into Node 3.
X