Refine Your Search

Topic

Author

Search Results

Video

Using SCADE System for the Design and Integration of Critical Systems

2012-03-14
This presentation shows the SCADE System product line for systems modeling and generation based on the SysML standard and the Eclipse Papyrus open source technology. SCADE System has been developed in the framework of Listerel, a joint laboratory of Esterel Technologies, provider of the SCADE�, and CEA LIST, project leader of the Eclipse component, Papyrus. From an architecture point of view, the Esterel SCADE tools are built on top of the SCADE platform which includes both SCADE Suite�, a model-based development environment dedicated to critical software, and SCADE System enabling model-based system engineering. SCADE System includes Papyrus, an open source component (under EPL license), integrated in the modeling platform of Eclipse. Using this integrated modeling platform, both system and software teams share the same environment for system development. Furthermore, other model-based tools can be added to the environment, due to the use of Eclipse.
Video

Applying Critical-System Java to the Challenges of SMP Platforms

2012-03-21
In recent years, all major microprocessor manufacturers are transitioning towards the deploymenet of multiple processing cores on every chip. These multi-core architectures represent the industry consensus regarding the most effective utilization of available silicon resources to satisfy growing demands for processing and memory capacities. Porting off-the-shelf software capabilities to multi-core architectures often requires significant changes to data structures and algorithms. When developing new software capabilities specifically for deployment on SMP architectures, software engineers are required to address specific multi-core programming issues, and in the ideal, must do so in ways that are generic to many different multi-core target platforms. This talk provides an overview of the special considerations that must be addressed by software engineers targeting multi-core platforms and describes how the Java language facilitates solutions to these special challenges.
Standard

SAE J1939 Network Security

2017-03-06
WIP
J1939-91
This document will provide recommendations to vehicle manufacturers and component suppliers in securing the SAE J1939-13 connector interface from the cybersecurity risks posed by the existence of this connector.
Standard

Performance Requirements for Nonmetallic Air Brake System Tubing

2014-08-26
WIP
J2547
This SAE Standard covers the minimum requirements for nonmetallic tubing as manufactured for use in air brake systems which tubing is different from that described in SAE J844. It is not intended to cover tubing for any portion of the system which operates continuously below - 40 degrees C or above +93 degrees C, above a maximum working gage pressure of 1.0 MPa, or in an area subject to attack by battery acid. This tubing is intended for use in the brake system for connections, which maintain a basically fixed relationship between components during vehicle operation. Coiled tube assemblies required for those installations where flexing occurs are covered by this document, SAE J1131 and SAE J2494-3, to the extent of setting minimum requirements on the essentially straight tube and tube fitting connections which are used in the construction of such assemblies.
Standard

Constant Speed Aerodynamic Procedure for Heavy Vehicles

2017-09-25
WIP
J3156
Develop and document an aerodynamic constant speed procedure for heavy vehicles that can accurately calculate the aerodynamic performance through the typical expected yaw angles during operation at highway speeds.
Standard

Taxonomy and Definitions for Automated Multi-Vehicle Truck and Bus Systems

2017-07-10
WIP
J3150
Scope: This document provides a taxonomy and definitions for trucks and buses with GVWR of more than 10,000 pounds with driving automation systems that perform part or all of the dynamic driving task on a sustained basis and that range in level from no driving automation (level 0) to full driving automation (level 5).
Standard

AIRCRAFT ELECTRICAL POWER SYSTEMS. MODELING AND SIMULATION. VALIDATION AND VERIFICATION METHODS.

2017-02-08
WIP
AIR6387
The development of future more-and full-electric aircraft concepts has significantly impacted aircraft electric power system (EPS) design. Finalizing the EPS architectures involves extensive modeling and simulation activities to ensure the required characteristics of the entire EPS prior to the physical implementation. Hence, the development of accurate, effective and computational time-saving simulation models is of great importance. Correspondingly, there is a need to establish an EPS-specific modeling and simulations common framework to ensure effective and accurate solutions to the problems addressed. The document continues a series of AE-7M documents specific for aircraft electrical systems aiming to establish such a framework (the series has started with AIR 6326 "Aircraft Electrical Power Systems. Modeling and Simulation. Definitions" issued in August, 2015).
Standard

Quality Pressure Measurements for Determining Inlet Distortion

2011-08-01
WIP
AIR6465
This document addresses many of the issues and challenges related to obtaining high quality measurements at the designated Aerodynamic Interface Plane (AIP) necessary to characterize the flow field. The intent is to consolidate information needed to understand the requirements, and techniques for obtaining quality measurements, and provide lessons learned from previous test programs. This document applies to Ground (wind tunnel and engine test) and Flight testing for inlet recovery and distortion for air vehicles.
Standard

Methods for Executing Gas Turbine Engine Performance Programs to Generate Envelope Performance for Customers

2017-04-10
WIP
AIR7486
This is an initial release of an Aerospace Information Report to provide methods for Engine Suppliers to follow to execute their in house performance models to generate datasets that are provided to airframe customers early in the conceptual design phase of an aircraft program. This AIR provides some general guidance for execution order and input settings to be used to execute the model.
Standard

A Current Assessment of Combining Distortion Types

2019-07-22
WIP
AIR9975
This document will address techniques or methods that have been used within the industry to address the problem of engine stability margin accounting when combinations of distortion types exist in an aircraft installation. Its focus is combining temperature, planar wave, and swirl distortion with time-variant spatial total pressure distortion. Example methodologies will be presented along with example cases where co-existing distortions have been evaluated. It will also address the areas where the industries' knowledge base is lacking (experimental data or computational methods) and the future work that is needed for methodology development in these areas. This document is viewed to be updated every five years as more information (data either experimentally or analytically) becomes available.
Standard

Aeroengine Hazard Zone

2020-03-31
WIP
ARP6990
Aeroengine Hazard Zone document will standardize the major aspects of processes that may be used for the determination of hazards to aerospace personnel when performing duties on turbojet, turbofan, turboprop and auxiliary power units installed on aircraft. It includes discussions of basic definitions, analytical and methods to describe the hazard zones for a given propulsion system installed on various aircraft. Standardization of definitions of sources of hazards, tools, presentation of hazard zones would benefit airplane, engine, airline customers and airport planners.
Standard

Measurement Uncertainty Applied to Cost-Effective Testing

2016-04-14
WIP
AIR5925B
The report shows how the methodology of measurement uncertainty can usefully be applied to test programs in order to optimize resources and save money. In doing so, it stresses the importance of integrating the generation of the Defined Measurement Process into more conventional project management techniques to create a Test Plan that allows accurate estimation of resources and trouble-free execution of the actual test. Finally, the report describes the need for post-test review and the importance of recycling lessons learned for the next project.
Journal Article

Fundamental Analysis of Spring-Varied, Free Piston, Otto Engine Device

2014-04-01
2014-01-1099
Conventional crank-based engines are limited by mechanical, thermal, and combustion inefficiencies. The free piston of a linear engine generator reduces frictional losses by avoiding the rotational motion and crankshaft linkages. Instead, electrical power is generated by the oscillation of a translator through a linear stator. Because the free piston is not geometrically constrained, dead center positions are not specifically known. This results in a struggle against adverse events like misfire, stall, over-fueling, or rapid load changes. It is the belief that incorporating springs will have the dual benefit of increasing frequency and providing a restoring force to aid in greater cycle to cycle stability. For dual free piston linear engines the addition of springs has not been fully explored, despite growing interest and literature.
Standard

Primary 13 Conductor Electrical Connector (Plug and Receptacle) between Towing Vehicle and Trailer.

2022-07-07
WIP
J3285
This SAE document provides the minimum requirements for a 13-conductor cable plug and receptacle to support the 13-conductor jumper cable between the towing vehicle and trailer. The document also includes the test procedures, design and performance requirements for the plug and receptacle. This document shall be used in conjunction with SAE J3284. The specified 13-conductor plug and receptacle would be totally interchangeable with the current SAE J560 primary plug and receptacle, plus provide an additional 6 conductors for use in trailers incorporating advanced electronics or multivoltage applications. New tractors designed with the 13 conductor receptacle and 13 conductor tractor to trailer cable and plug assembly, would be compatible with old trailers (7 conductor receptacle) and new trailers (13 conductor receptacle).
Standard

Coiled Tubing Assemblies for Heavy Duty Air Brake Applications

2022-06-03
WIP
J3041
This SAE Standard establishes the minimum performance and endurance requirements for coiled air brake tubing assemblies used for hookup between tractors, trailers and converter dollies. The Standards SAE J844 and SAE J246 along with J1131 must be consulted to determine the complete performance and endurance requirements of individual components of the system. Related TMC Recommended Practices may be consulted for information associated with selection, installation and inspection of these assemblies. This document is intended to set out requirements for the majority of conditions rather than for specialized applications or environments.
Standard

13-Conductor Electrical Cable between Towing Vehicle and Trailer

2022-06-15
WIP
J3284
This SAE standard establishes the minimum construction and performance requirements for a combination cable consisting of 9 conductors and 2 twisted pairs for use on trucks, trailers, and dollies. The cable includes power, ground and 2 jacketed/unshielded twisted paired signal circuits. This standard will be used in conjunction with the SAEJ XXXX “13 Conductor Electrical Connector (Plug and Receptacle) between Towing Vehicle and Trailer”. The standard will also include the test procedures, design and performance requirements for the cable.
Journal Article

On-Road NOx Emission Rates from 1994-2003 Heavy-Duty Diesel Trucks

2008-04-14
2008-01-1299
In-service 1994-2003 heavy-duty trucks were acquired by West Virginia University (WVU), equipped with the WVU Mobile Emissions Measurement System (MEMS) to measure on-road NOx, and driven on road routes near Sabraton, West Virginia, and extending up to Washington, PA to obtain real-world oxides of nitrogen (NOx) emissions data on highways and local roads. The MEMS measured 5Hz NOx, and load was obtained from the electronic control unit. Trucks were loaded to about 95% of their gross vehicle weights. Emissions in g/mi and g/bhp-hr were computed over the various road routes. In addition, some of the trucks were tested 1 to 2 years later to determine emission changes that may have occurred for these trucks. Emission results varied significantly over the different road routes due to different speeds, driving patterns, and road grades.
Standard

Measurement of Exterior Noise Produced by Aircraft Auxiliary Power Units (APUs) and Associated Aircraft Systems During Ground Operation

2013-07-19
WIP
ARP1307C
Test procedures are described for measuring noise at specific receiver locations (passenger and cargo doors, and servicing positions) and for conducting general noise surveys around aircraft. Procedures are also described for measuring noise level and directivity at noise source locations to facilitate the understanding and interpretation of the data. Requirements are identified with respect to instrumentation; acoustic and atmospheric environment; data acquisition, reduction and presentation, and such other information as is needed for reporting the results. This document makes no provision for predicting APU or component noise from basic engine characteristics or design parameters, nor for measuring noise of more than one aircraft operating at the same time. No attempt is made to suggest acceptable levels of noise or suitable subjective criteria for judging acceptability. ICAO Annex 16 Volume I Attachment C provides guidance on recommended maximum noise levels.
X