Refine Your Search

Topic

Author

Search Results

Video

A Study of PGM-Free Oxidation Catalyst YMnO3 for Diesel Exhaust Aftertreatment

2012-06-18
Currently, two consolidated aftertreatment technologies are available for the reduction of NOx emissions from diesel engines: Urea SCR (Selective Catalytic Reduction) systems and LNT (Lean NOx Trap) systems. Urea SCR technology, which has been widely used for many years at stationary sources, is becoming nowadays an attractive alternative also for light-duty diesel applications. However, SCR systems are much more effective in NOx reduction efficiency at high load operating conditions than light load condition, characterized by lower exhaust gas temperatures.
Journal Article

Design Optimization of Interior Permanent Magnet Synchronous Motors for HEV & EV

2010-04-12
2010-01-1252
This paper proposes a new motor design procedure for reducing motor loss in hybrid vehicles (HEV) and electric vehicles (EV). To find an optimum design in a short time, a non-linear magnetic circuit model was developed for interior permanent magnet synchronous motors (IPMSM). Speed-torque curves and motor losses were calculated based on this model. Combined with Energy Management Simulation, this model makes it possible to find an optimum motor design with minimum loss.
Journal Article

Development of Transverse Flux Motor with Improved Material and Manufacturing Method

2013-04-08
2013-01-1765
Honda has been proposing and developing a Transverse Flux Motor (T.F. motor) in order to shorten axial length of the motor for hybrid electric vehicles (HEVs). In contrast to conventional motors that are composed of a stator core (made from magnetic steel sheet) and winding wires, the T.F. motor is a new type of three-dimensional magnetic circuit motor composed of a soft magnetic composites (SMC) core and a coil. While reducing axial length and achieving a simple stator architecture comprised of just five parts, the new motor raises issues including the need to improve motor efficiency and the development of techniques for the manufacture of rectangular wave-shaped coils. To improve motor efficiency, we conducted a parameter study of the SMC core material and manufacturing conditions to establish the optimum required specifications for reducing iron loss.
Journal Article

Development of Li-ion Battery Control Technology for HEV

2015-04-14
2015-01-0251
The mounting of lithium-ion batteries (LIB) in hybrid electric vehicles (HEV) calls for the configuration of highly robust control systems. When mounting LIBs in the vehicle, it is important to accurately ascertain and precisely control the state of the battery. In order to achieve high durability, it is important to configure highly reliable systems capable of dependably preventing overcharging as well as to have control technology based on software that can contribute to extended battery life. The system configuration applies an overcharge prevention system that uses voltage detection with an emphasis on reliability. Furthermore, a method for varying the range of state of charge (SOC) control in the vehicle according to the battery state is implemented to assure durability. In order to achieve this, battery-state detection technology was developed for the purpose of correctly detecting and judging the battery state.
Journal Article

Development of Electric Powertrain for CLARITY PLUG-IN HYBRID

2018-04-03
2018-01-0415
Honda has developed the 2018 model CLARITY PLUG-IN HYBRID. Honda’s new plug-in hybrid is a midsize sedan and shares a body platform with the CLARITY FUEL CELL and the CLARITY ELECTRIC. The vehicle’s electric powertrain boosts driving performance as an electric vehicle (EV) over Honda’s previous plug-in hybrid. The CLARITY PLUG-IN HYBRID’s electric powertrain consists of a traction motor and generator built into the transmission, a Power Control Unit (PCU) positioned above the transmission, an Intelligent Power Unit (IPU) fitted under the floor, and an onboard charger fitted below the rear trunk. The PCU integrates an inverter that drives the traction motor, an inverter that drives the generator, and a DC-DC converter to boost battery voltage (referred to as a “Voltage Control Unit (VCU)” below).
Journal Article

Advanced Transient Simulation on Hybrid Vehicle Using Rankine Cycle System

2008-04-14
2008-01-0310
A hybrid simulation model in the transient bench was developed to realize the characteristics of the transient behavior and the fuel economy equivalent to that of a real vehicle. The motors and the batteries that were main components of the hybrid vehicle system were simulated as constructive modules, the functions of which have the integrated control and the input/output (I/O) function with real components. This model enabled us to accommodate a variety of auxiliary (AUX) I/O flexibly. The accuracy of the model was verified by the transient characteristics of the engine and the fuel economy result through correlation with a mass-produced vehicle. Furthermore, the flexibility of the model to a variety of AUX I/O was examined from the simulation test of the vehicle equipped with the waste heat recovery (WHR) system.
Journal Article

Multi-Variable Air-Path Management for a Clean Diesel Engine Using Model Predictive Control

2009-04-20
2009-01-0733
Recently, emission regulations have been strict in many countries, and it is very difficult technical issue to reduce emissions of diesel cars. In order to reduce the emissions, various combustion technologies such as Massive EGR, PCCI, Rich combustion, etc. have been researched. The combustion technologies require precise control of the states of in-cylinder gas (air mass flow, EGR rate etc.). However, a conventional controller such as PID controller could not provide sufficient control accuracy of the states of in-cylinder gas because the air-pass system controlled by an EGR valve, a throttle valve, a variable nozzle turbo, etc. is a multi-input, multi-output (MIMO) coupled system. Model predictive control (MPC) is well known as the advanced MIMO control method for industrial process. Generally, the sampling period of industrial process is rather long so there is enough time to carry out the optimization calculation for MPC.
Journal Article

Development of Compact Transverse Flux Motor with a New Magnetic Circuit Configuration

2011-04-12
2011-01-0348
Size reduction is a significant requirement for hybrid vehicle motors. To meet this requirement, a small new-structure transverse flux (T.F.) motor has been developed, with efforts focused on coil end elimination and a higher motor torque density. The new structure is characterized by a stator core with a three-dimensional flux path configuration. A prototype motor was also designed and produced using ring coils and stator cores made of soft magnetic composites (SMC). The prototype performance was tested to verify the validity of the new magnetic circuit configuration.
Journal Article

Application of Electric Servo Brake System to Plug-In Hybrid Vehicle

2013-04-08
2013-01-0697
An electric servo brake system applied for use on electric vehicles was applied for use on plug-in hybrid vehicles in order to achieve fuel-savings together with good brake feel and enhanced operability for plug-in hybrid vehicles. The electric servo brake system is made up of highly accurate braking pressure control that functions cooperatively with regenerative brakes together with a structure in which pedal force is not influenced by braking pressure control. The configuration of these components enabled good braking feel even when the power train was being switched from one drive mode to another. Automated pressurization functions that are intended for plug-in hybrid vehicles and that operate with electric servo brake systems were also developed. These developed functions include stall cooperative control that functions cooperatively with the power train, regenerative coordinate adaptive cruise control, and hill-start assist.
Journal Article

Development of a New Two-Motor Plug-In Hybrid System

2013-04-08
2013-01-1476
A highly efficient two-motor plug-in hybrid system is developed to satisfy the global demands of CO2 reduction. This system switches three operation modes, what is called “EV Drive”, “Hybrid Drive” and “Engine Drive”, to maximize fuel efficiency according to the driving condition of the vehicle. Practical plug-in EV (Electric Vehicle) capability is also realized by adding a high-power on-board charger and a high capacity Li-ion battery to the original system. The outlines of the system components including a newly developed Atkinson cycle engine, a highly efficient electric coupled CVT (Continuously Variable Transmission) with built-in motor and generator, an integrated PCU (Power Control Unit) and an exclusive battery for plug-in HEV (Hybrid Electric Vehicle) are described in this paper. In addition to the switching of three driving modes and the efficiency improvement of each device, cooperative control of the hybrid system is introduced.
Journal Article

Ag-Type PM Oxidation Catalyst with Nd Added to Increase Contact Property between PM and Catalyst

2018-04-03
2018-01-0328
Honda diesel engine vehicles that go on the market in 2018 will be equipped with a newly developed silver (Ag)-type catalyzed diesel particulate filter (cDPF). Ag has high particulate matter (PM) oxidation performance, but conventional catalyst-carrying methods cause weak contact property between PM and Ag; therefore, the newly Ag-type cDPF was developed on the concept of enhancing the property of contact between PM and the catalyst to realize contact property enhancement at the macro, meso, and nano scales. As a result, the newly developed catalyst showed an enhancement of T90 performance by a factor of approximately 2 relative to the conventional Ag-type catalyst in fresh condition. Durability in the environment of an automobile in use was examined through hydrothermal aging, lean-rich (L/R) aging, sulfur (S) poisoning, and ash deposition. The results have confirmed that hydrothermal aging is the greatest factor in deterioration.
Journal Article

NOx Trap Three-Way Catalyst (N-TWC) Concept: TWC with NOx Adsorption Properties at Low Temperatures for Cold-Start Emission Control

2015-04-14
2015-01-1002
A new concept for trapping NOx and HC during cold start, the NOx Trap Three-Way Catalyst (N-TWC), is proposed. N-TWC adsorbs NOx at room temperature, and upon reaching activation temperature under suitable air-fuel ratio conditions, it reduces the adsorbed NOx. This allows a reduction in NOx emissions during cold start. N-TWC's reduction mechanism relies on NOx adsorption sites which are shown to be highly dispersed palladium on acid sites in the zeolite. Testing on an actual vehicle equipped with N-TWC confirmed that N-TWC is able to reduce emissions of NOx and HC during cold start, which is a challenge for conventional TWCs.
Technical Paper

Total Phosphorus Detection and Mapping in Catalytic Converters

2007-10-29
2007-01-4078
The poisoning of three way catalysts (TWC) by the phosphorus contained in oil formulations containing zinc dialkyldithiophosphate (ZDDP) is examined. Catalysts were exposed to various types of ZDDP and detergents under conditions that were known to reduce performance through phosphorus poisoning without the blocking of sites by formation of glazing. The presence of phosphorus was detected with energy dispersive x-ray spectroscopy (EDX). In addition to analyzing the surface concentration of the phosphorus on the washcoat, the catalyst was cross cut so phosphorus that diffused into the washcoat could be mapped. The total phosphorus in the catalyst could then be calculated. The amount of total phosphorus detected correlated well with the reduced activity of the catalyst as measured by the temperature of 50% conversion.
Technical Paper

Study on Emission Reducing Method with New Lean NOX Catalyst for Diesel Engines

2007-07-23
2007-01-1933
In recent years, emission regulations have become more stringent as a result of increased environmental awareness in each region of the world. For diesel engines, reducing NOX emissions is a difficult technical challenge.[1],[2],[3],[4]. To respond to these strict regulations, an exhaust gas aftertreatment system was developed, featuring a lean NOX catalyst (LNC) that uses a new chemical reaction mechanism to reduce NOX. The feature of the new LNC is the way it reduces NOX through an NH3-selective catalytic reduction (SCR), in which NOX adsorbed in the lean mixture condition is converted to NH3 in the rich mixture condition and reduced in the following lean mixture condition. Thus, the new system allows the effective reduction of NOX. However, in order to realize cleaner emission gases, precise engine control in response to the state of the exhaust aftertreatment system is essential.
Technical Paper

Study on Low NOX Emission Control Using Newly Developed Lean NOX Catalyst for Diesel Engines

2007-04-16
2007-01-0239
In recent years, emission regulations have become more stringent as a result of increased environmental awareness in each region of the world. For lean-burn diesel engines, since it is not possible to use three-way catalytic converters, reducing NOX emissions is a difficult technical challenge. To respond to these strict regulations, an exhaust gas aftertreatment system was developed, featuring a lean NOX catalyst (LNC) that uses a new chemical reaction mechanism to reduce NOX. The feature of the new LNC is the way it reduces NOX through an NH3-selective catalytic reduction (SCR), in which NOX adsorbed in the lean mixture condition is converted to NH3 in the rich mixture condition and reduced in the following lean mixture condition. Thus, the new system allows more efficient reduction of NOX than its conventional counterparts. However, an appropriate switching control between lean and rich mixture conditions along with compensation for catalyst deterioration was necessary.
Technical Paper

Development of Hydraulic Servo Brake System for Cooperative Control with Regenerative Brake

2007-04-16
2007-01-0868
A new brake system, able to make efficient use of regenerative braking while maintaining excellent brake feel, has been developed to increase the fuel economy of hybrid vehicles. A hydraulic servo was used as a base to enable mechanical operation of the service brakes; solenoid valves and brake fluid pressure sensors were added to this base to make it possible to control brake line pressure as demanded. The use of a stroke simulator in the hydraulic servo prevents brake feel from being affected by the control of the brake pressure. In addition, high-accuracy brake pressure control that functions cooperatively with the regenerative brakes is enabled, resulting in stable braking effectiveness.
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP

2008-09-09
2008-32-0005
Just as CO2 reduction is required of four wheeled vehicles for environmental protection, similar environmental concerns drive the development of motorcycle oil technology. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Mr. Ito and his co-authors1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods:JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
Technical Paper

Study on Engine Management System Using In-cylinder Pressure Sensor Integrated with Spark Plug

2004-03-08
2004-01-0519
There has been strong public demand for reduced hazardous exhaust gas emissions and improved fuel economy for automobile engines. In recent years, a number of innovative solutions that lead to a reduction in fuel consumption rate have been developed, including in-cylinder direct injection and lean burn combustion technologies, as well as an engine utilizing a large volume of exhaust gas recirculation (EGR). Furthermore, a homogeneous charge compression ignition (HCCI) engine is under development for actual application. However, one of the issues common to these technologies is less stable combustion, which causes difficulty in engine management. Additionally, it is now mandatory to provide an onboard diagnosis (OBD) system. This requires manufacturers to develop a technology that allows onboard monitoring and control of the combustion state. This paper reports on an innovative combustion diagnostic method using an in-cylinder pressure sensor.
Technical Paper

Intake and Exhaust Systems Equipped with a Variable Valve Control Device for Enhancing of Engine Power

2001-03-05
2001-01-0247
The variable intake and exhaust control valve system for the in-line four-cylinder motorcycle engine was developed for realization of high engine power in all the engine speed ranges. Both the variable intake and exhaust control valves are operated by one servomotor. For high engine speeds, the exhaust collector pipe design for merging of each exhaust gas flow at 180 degrees phase difference is used. For mid engine speeds, the design for merging of each exhaust gas flow at 360 degrees phase difference is used. Two modes are provided to the intake control, and three modes are provided to the exhaust control. Along with exhaust-gas treatment systems such as the catalyst and air-injection system, high engine performance with optimum driveability and reduced emission are realized.
X