Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Effect of Illumination Angle on the Performance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

2009-07-12
2009-01-2420
JSC-1A lunar simulant has been applied to AZ93 and AgFEP thermal control surfaces on aluminum substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator using varying angles of incidence and cooled in a 30 K coldbox. Thermal modeling was used to determine the solar absorptivity (a) and infrared emissivity (e) of the thermal control surfaces in both their clean and dusted states. It was found that even a sub-monolayer of dust can significantly raise the α of either type of surface. A full monolayer can increase the α/ε ratio by a factor of 3–4 over a clean surface. Little angular dependence of the α of pristine thermal control surfaces for both AZ93 and AgFEP was observed, at least until 30° from the surface. The dusted surfaces showed the most angular dependence of α when the incidence angle was in the range of 25° to 35°.
Journal Article

Developing Abrasion Test Standards for Evaluating Lunar Construction Materials

2009-07-12
2009-01-2377
Operational issues encountered by Apollo astronauts relating to lunar dust were catalogued, including material abrasion that resulted in scratches and wear on spacesuit components, ultimately impacting visibility, joint mobility and pressure retention. Standard methods are being developed to measure abrasive wear on candidate construction materials to be used for spacesuits, spacecraft, and robotics. Calibration tests were conducted using a standard diamond stylus scratch tip on the common spacecraft structure aluminum, Al 6061-T6. Custom tips were fabricated from terrestrial counterparts of lunar minerals for scratching Al 6061-T6 and comparing to standard diamond scratches. Considerations are offered for how to apply standards when selecting materials and developing dust mitigation strategies for lunar architecture elements.
Journal Article

Ice Crystal Icing Engine Testing in the NASA Glenn Research Center's Propulsion Systems Laboratory: Altitude Investigation

2015-06-15
2015-01-2156
The National Aeronautics and Space Administration (NASA) conducted a full scale ice crystal icing turbofan engine test using an obsolete Allied Signal ALF502-R5 engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The test article used was the exact engine that experienced a loss of power event after the ingestion of ice crystals while operating at high altitude during a 1997 Honeywell flight test campaign investigating the turbofan engine ice crystal icing phenomena. The test plan included test points conducted at the known flight test campaign field event pressure altitude and at various pressure altitudes ranging from low to high throughout the engine operating envelope. The test article experienced a loss of power event at each of the altitudes tested.
Technical Paper

Artifact vs. Anatomy: Dealing with Conflict of Geometric Modeling Descriptions

2007-06-12
2007-01-2450
In applications ranging from design of customized vehicle interiors to virtual testing of biomedical devices, the processes of modeling, design and analysis involve the simultaneous treatment of artifacts (i.e., parts designed by humans) and anatomical structures. An inherent conflict arises because the geometric descriptions are completely different. Artifact descriptions are typically the output of computer-aided design (CAD) software and consist of a collection of parametric patches that comprise the boundary of the artifact. In stark contrast, the native description of an anatomical structure typically consists of an image stack obtained using a volumetric scanning technology such as computed tomography (CT) or magnetic resonance imaging (MRI). Current practice for simultaneously dealing with both categories of entities involves working primarily in the world of CAD.
Technical Paper

Parameter Estimation of the Human Ankle in the Transverse Plane during Straight Walking

2007-06-12
2007-01-2486
In order to reduce painful and injurious shear stresses for lower limb amputees, prosthetic ankle joints need to provide torsional control in the transverse plane. This paper attempts to characterize biological ankle function in the transverse plane with simple mechanical elements to assist in the design of a biomimetic prosthetic ankle joint. Motion capture data was collected from ten subjects walking in a straight trajectory to model four states of stance phase. Passive elements were chosen to model the ankle in each state. The ankle was observed to act as a quadratic torsional spring in State 1 and as linear torsional springs in States 2, 3 and 4. The results of this study should assist with the mechanical design and control of a biomimetic torsional prosthesis by suggesting a finite state control system and by providing the stiffness coefficients to be controlled for straight walking.
Technical Paper

The CEV Smart Buyer Team Effort: A Summary of the Crew Module & Service Module Thermal Design Architecture

2007-07-09
2007-01-3046
The NASA-wide CEV Smart Buyer Team (SBT) was assembled in January 2006 and was tasked with the development of a NASA in-house design for the CEV Crew Module (CM), Service Module (SM), and Launch Abort System (LAS). This effort drew upon over 250 engineers from all of the 10 NASA Centers. In 6 weeks, this in-house design was developed. The Thermal Systems Team was responsible for the definition of the active and passive design architecture. The SBT effort for Thermal Systems can be best characterized as a design architecting activity. Proof-of-concepts were assessed through system-level trade studies and analyses using simplified modeling. This nimble design approach permitted definition of a point design and assessing its design robustness in a timely fashion. This paper will describe the architecting process and present trade studies and proposed thermal designs
Technical Paper

Innovative Multi-Environment, Multimode Thermal Control System

2007-07-09
2007-01-3202
Innovative multi-environment multimode thermal management architecture has been described that is capable of meeting widely varying thermal control requirements of various exploration mission scenarios currently under consideration. The proposed system is capable of operating in a single-phase or two-phase mode rejecting heat to the colder environment, operating in a two-phase mode with heat pump for rejecting heat to a warm environment, as well as using evaporative phase-change cooling for the mission phases where the radiator is incapable of rejecting the required heat. A single fluid loop can be used internal and external to the spacecraft for the acquisition, transport and rejection of heat by the selection of a working fluid that meets NASA safety requirements. Such a system may not be optimal for each individual mode of operation but its ability to function in multiple modes may permit global optimization of the thermal control system.
Technical Paper

ISS Destiny Laboratory Smoke Detection Model

2007-07-09
2007-01-3076
Smoke transport and detection were modeled numerically in the ISS Destiny module using the NIST, Fire Dynamics Simulator code. The airflows in Destiny were modeled using the existing flow conditions and the module geometry included obstructions that simulate the currently installed hardware on orbit. The smoke source was modeled as a 0.152 by 0.152 m region that emitted smoke particulate ranging from 1.46 to 8.47 mg/s. In the module domain, the smoke source was placed in the center of each Destiny rack location and the model was run to determine the time required for the two smoke detectors to alarm. Overall the detection times were dominated by the circumferential flow, the axial flow from the intermodule ventilation and the smoke source strength.
Technical Paper

Review of Role of Icing Feathers in Ice Accretion Formation

2007-09-24
2007-01-3294
This paper presents a review of our current experimental and theoretical understanding of icing feathers and the role that they play in the formation of ice accretions. It covers the following areas: a short review of past research work related to icing feathers; a discussion of the physical characteristics and terminology used in describing icing feathers; the presence of feathers on ice accretions formed in unswept airfoils, especially at SLD conditions; the role that icing feathers play in the formation of ice accretion shapes on swept wings; the formation of icing feathers from roughness elements; theoretical considerations regarding feather formation, feather interaction to form complex icing structures, the role of film dynamics in the formation of roughness elements and the formation of feathers. Hypotheses related to feather formation and feather growth are discussed.
Technical Paper

Parametric Study of Ice Accretion Formation on a Swept Wing at SLD Conditions

2007-09-24
2007-01-3345
An experiment was conducted in the Icing Research Tunnel (IRT) at NASA Glenn Research Center to study the effect of sweep angle and temperature on the formation of ice accretions on a NACA 0012 swept wing at SLD conditions. From a baseline Appendix-C condition with a MVD of 20m the drop size was changed to 110 and 200m for the SLD cases. Casting data, ice shape tracings, time-sequence and photographic data were obtained. Time-sequence photography was taken during each run to capture in real time the formation of the ice accretion. Measurements of the critical distance were obtained.
Technical Paper

Map Matching with Travel Time Constraints

2007-04-16
2007-01-1102
Map matching determines which road a vehicle is on based on inaccurate measured locations, such as GPS points. Simple algorithms, such as nearest road matching, fail often. We introduce a new algorithm that finds a sequence of road segments which simultaneously match the measured locations and which are traversable in the time intervals associated with the measurements. The time constraint, implemented with a hidden Markov model, greatly reduces the errors made by nearest road matching. We trained and tested the new algorithm on data taken from a large pool of real drivers.
Technical Paper

Route Prediction from Trip Observations

2008-04-14
2008-01-0201
This paper develops and tests algorithms for predicting the end-to-end route of a vehicle based on GPS observations of the vehicle's past trips. We show that a large portion a typical driver's trips are repeated. Our algorithms exploit this fact for prediction by matching the first part of a driver's current trip with one of the set of previously observed trips. Rather than predicting upcoming road segments, our focus is on making long term predictions of the route. We evaluate our algorithms using a large corpus of real world GPS driving data acquired from observing over 250 drivers for an average of 15.1 days per subject. Our results show how often and how accurately we can predict a driver's route as a function of the distance already driven.
Technical Paper

Development of Icing Condition Remote Sensing Systems and their Implications for Future Flight Operations

2003-06-16
2003-01-2096
NASA and the FAA are funding the development of ground-based remote sensing systems specifically designed to detect and quantify the icing environment aloft. The goal of the NASA activity is to develop a relatively low cost stand-alone system that can provide practical icing information to the flight community. The goal of the FAA activity is to develop more advanced systems that can identify supercooled large drop (SLD) as well as general icing conditions and be integrated into the existing weather information infrastructure. Both activities utilize combinations of sensing technologies including radar, radiometry, and lidar, along with Internet-available external information such as numerical weather model output where it is found to be useful. In all cases the measured data of environment parameters will need to be converted into a measure of icing hazard before it will be of value to the flying community.
Technical Paper

NASA's In-Flight Education and Training Aids for Pilots and Operators

2003-06-16
2003-01-2142
To support NASA's goal to improve aviation safety, the Aircraft Icing Project of the Aviation Safety Program has developed a number of education and training aids for pilots and operators on the hazards of atmospheric icing. A review of aircraft incident and accident investigations has revealed that flight crews have not always understood the effects of ice contamination on their aircraft. To increase this awareness, NASA has partnered with regulatory agencies and pilot trade organizations to assure relevant and practical materials that are focused toward the intended pilot audience. A number of new instructional design approaches and media delivery methods have been introduced to increase the effectiveness of the training materials by enhancing the learning experience, expanding user interactivity and participation, and, hopefully, increasing learner retention rates.
Technical Paper

SLD Research in the UK

2003-06-16
2003-01-2128
This paper reviews work conducted in the UK aimed at developing validated methods to simulate ice accretion formed in super-cooled large droplet (SLD) icing conditions. To date, QinetiQ has completed one theoretical and three experimental programmes of work. Two further studies are currently in progress within UK universities. This paper provides results from the third test conducted by QinetiQ and NASA in the GKN Aerospace Composite Technologies Icing Research Wind Tunnel, Luton UK, to measure the mass loss through droplet splash during an SLD encounter. A description of the test procedures and the results obtained are provided. Future work on SLD methods development in progress in the UK is then briefly outlined.
Technical Paper

An Experimental Investigation of SLD Impingement on Airfoils and Simulated Ice Shapes

2003-06-16
2003-01-2129
This paper presents experimental methods for investigating large droplet impingement dynamics and for obtaining small and large water droplet impingement data. Droplet impingement visualization experiments conducted in the Goodrich Icing Wind Tunnel with a 21-in chord NACA 0012 airfoil demonstrated considerable droplet splashing during impingement. The tests were performed for speeds in the range 50 to 175 mph and with cloud median volumetric diameters in the range of 11 to 270 microns. Extensive large droplet impingement tests were conducted at the NASA Glenn Icing Research Tunnel (IRT). Impingement data were obtained for a range of airfoil sections including three 36-inch chord airfoils (MS(1)-0317, GLC-305, and NACA 652-415), a 57-inch chord Twin Otter horizontal tail section and 22.5-minute and 45-minute LEWICE glaze ice shapes for the Twin Otter tail section. Small droplet impingement tests were also conducted for selected test models.
Technical Paper

Update On SLD Engineering Tools Development

2003-06-16
2003-01-2127
The airworthiness authorities (FAA, JAA, Transport Canada) will be releasing a draft rule in the 2006 timeframe concerning the operation of aircraft in a Supercooled Large Droplet (SLD) environment aloft. The draft rule will require aircraft manufacturers to demonstrate that their aircraft can operate safely in an SLD environment for a period of time to facilitate a safe exit from the condition. It is anticipated that aircraft manufacturers will require a capability to demonstrate compliance with this rule via experimental means (icing tunnels or tankers) and by analytical means (ice prediction codes). Since existing icing research facilities and analytical codes were not developed to account for SLD conditions, current engineering tools are not adequate to support compliance activities in SLD conditions. Therefore, existing capabilities need to be augmented to include SLD conditions.
Technical Paper

An Aerodynamic Simulation Process for Iced Lifting Surfaces and Associated Issues

2003-06-16
2003-01-2135
This paper discusses technologies and software tools that are being implemented in a software toolkit currently under development at NASA Glenn Research Center. Its purpose is to help study the effects of icing on airfoil performance and assist with the aerodynamic simulation process which consists of characterization and modeling of ice geometry, application of block topology and grid generation, and flow simulation. Tools and technologies for each task have been carefully chosen based on their contribution to the overall process. For the geometry characterization and modeling, we have chosen an interactive rather than automatic process in order to handle numerous ice shapes. An Appendix presents features of a software toolkit developed to support the interactive process. Approaches taken for the generation of block topology and grids, and flow simulation, though not yet implemented in the software, are discussed with reasons for why particular methods are chosen.
Technical Paper

The StressWaveTM Fatigue Life Enhancement Process

2001-09-10
2001-01-2578
A new, patented process for improving the fatigue lives of holes in metal structures has been developed. The process, known as StressWaveTM, produces residual compressive stresses and fatigue performance comparable to, or better than, those produced by legacy cold working methods and is designed primarily for automated manufacturing, fastening and assembly environments. Eliminating the need for close-tolerance starting holes, consumable sleeves, liquid lubricant cleanup and off-line processing increases speed of operation. These process benefits and associated cost savings satisfy many aspects of lean and continuous improvement program initiatives.
Technical Paper

Ice Accretions on a Swept GLC-305 Airfoil

2002-04-16
2002-01-1519
An experiment was conducted in the Icing Research Tunnel (IRT) at NASA Glenn Research Center to obtain castings of ice accretions formed on a 28° swept GLC-305 airfoil that is representative of a modern business aircraft wing. Because of the complexity of the casting process, the airfoil was designed with three removable leading edges covering the whole span. Ice accretions were obtained at six icing conditions. After the ice was accreted, the leading edges were detached from the airfoil and moved to a cold room. Molds of the ice accretions were obtained, and from them, urethane castings were fabricated. This experiment is the icing test of a two-part experiment to study the aerodynamic effects of ice accretions.
X