Refine Your Search

Topic

Author

Search Results

Journal Article

The Influence of the Through-Thickness Strain Gradients on the Fracture Characterization of Advanced High-Strength Steels

2018-04-03
2018-01-0627
The development and calibration of stress state-dependent failure criteria for advanced high-strength steel (AHSS) and aluminum alloys requires characterization under proportional loading conditions. Traditional tests to construct a forming limit diagram (FLD), such as Marciniak or Nakazima tests, are based upon identifying the onset of strain localization or a tensile instability (neck). However, the onset of localization is strongly dependent on the through-thickness strain gradient that can delay or suppress the formation of a tensile instability so that cracking may occur before localization. As a result, the material fracture limit becomes the effective forming limit in deformation modes with severe through-thickness strain gradients, and this is not considered in the traditional FLD. In this study, a novel bending test apparatus was developed based upon the VDA 238-100 specification to characterize fracture in plane strain bending using digital image correlation (DIC).
Technical Paper

A Personalized Deep Learning Approach for Trajectory Prediction of Connected Vehicles

2020-04-14
2020-01-0759
Forecasting the motion of the leading vehicle is a critical task for connected autonomous vehicles as it provides an efficient way to model the leading-following vehicle behavior and analyze the interactions. In this study, a personalized time-series modeling approach for leading vehicle trajectory prediction considering different driving styles is proposed. The method enables a precise, personalized trajectory prediction for leading vehicles with limited inter-vehicle communication signals, such as vehicle speed, acceleration, space headway, and time headway of the front vehicles. Based on the learning nature of human beings that a human always tries to solve problems based on grouping and similar experience, three different driving styles are first recognized based on an unsupervised clustering with a Gaussian Mixture Model (GMM).
Journal Article

Design of an Advanced Traction Controller for an Electric Vehicle Equipped with Four Direct Driven In-Wheel Motors

2008-04-14
2008-01-0589
The vision for the future automotive chassis is to interconnect the lateral, longitudinal, and vertical dynamics by separately controlling driving, braking, steering, and damping of each individual wheel. A major advantage of all wheel drive electric vehicles with four in-wheel motors is the possibility to control the torque and speed at each wheel independently. This paper proposes a traction controller for such a vehicle. It estimates the road's adhesion potential at each wheel and adjusts each motor voltage, such that the longitudinal slip is kept in an optimal range. For development and validation, a full vehicle model is designed in ADAMS/View software, in co-simulation with motor and control elements, modeled in MATLAB/Simulink.
Journal Article

An Efficient Lift Control Technique in Electro-hydraulic Camless Valvetrain Using Variable Speed Hydraulic Pump

2011-04-12
2011-01-0940
Significant improvement in fuel consumption, torque delivery and emission could be achieved through flexible control of the valve timings, duration and lift. In most existing electro-hydraulic variable valve actuation systems, the desired valve lift within every engine cycle is achieved by accurately controlling of the solenoid-valve opening interval; however, due to slow response time, precision control of these valves is difficult particularly during higher engine speeds. In this paper a new lift control strategy is proposed based on the hydraulic supply pressure and flow control. In this method, in order to control the peak valve lift, the hydraulic pump speed is precisely controlled using a two-input gearbox mechanism. This eliminates the need for precision control of the solenoid valves opening interval within every cycle.
Technical Paper

Effect of Cross Flow on Performance of a PEM Fuel Cell

2007-04-16
2007-01-0697
A serpentine flow channel is one of the most common and practical channel layouts for a PEM fuel cell since it ensures the removal of water produced in a cell. While the reactant flows along the flow channel, it can also leak or cross to neighboring channels via the porous gas diffusion layer due to a high pressure gradient. Such a cross flow leads to effective water removal in a gas diffusion layer thus enlarging the active area for reaction although this cross flow has largely been ignored in previous studies. In this study, neutron radiography is applied to investigate the liquid water accumulation and its effect on the performance of a PEM fuel cell. Liquid water tends to accumulate in the gas diffusion layer adjacent to the flow channel area while the liquid water formed in the gas diffusion layer next to the channel land area seems to be effectively removed by the cross leakage flow between the adjacent flow channels.
Technical Paper

Implementation and Optimization of a Fuel Cell Hybrid Powertrain

2007-04-16
2007-01-1069
A fuel cell hybrid powertrain design is implemented and optimized by the University of Waterloo Alternative Fuels Team for the ChallengeX competition. A comprehensive set of bench-top and in-vehicle validation results are used to generate accurate fuel cell vehicle models for SIL/HIL control strategy testing and tuning. The vehicle is brought to a “99% buy-off” level of production readiness, and a detailed crashworthiness analysis is performed. The vehicle performance is compared to Vehicle Technical Specifications (VTS).
Technical Paper

An Analytical Analysis on the Cross Flow in a PEM Fuel Cell with Serpentine Channel

2008-04-14
2008-01-0314
A serpentine flow channel can be considered as neighboring channels connected in series, and is one of the most common and practical channel layouts for PEM fuel cells since it ensures the removal of liquid water produced in a cell with excellent performance and acceptable parasitic load. During the reactant flows along the flow channel, it can also leak or cross directly to the neighboring channel via the porous gas diffusion layer due to the high pressure gradient caused by the short distance. Such a cross flow leads to a larger effective flow area resulting in a substantially lower amount of pressure drop in an actual PEM fuel cell compared to the case without cross flow. In this work, an analytical solution is obtained for the cross flow in a PEM fuel cell with a serpentine flow channel based on the assumption that the velocity of cross flow is linearly distributed in the gas diffusion layer between two successive U-turns.
Technical Paper

A New Air Hybrid Engine Using Throttle Control

2009-04-20
2009-01-1319
In this work, a new air hybrid engine is introduced in which two throttles are used to manage the engine load in three modes of operation i.e. braking, air motor, and conventional mode. The concept includes an air tank to store pressurized air during braking and rather than a fully variable valve timing (VVT) system, two throttles are utilized. Use of throttles can significantly reduce the complexity of air hybrid engines. The valves need three fixed timing schedules for the three modes of operation. To study this concept, for each mode, the results of engine simulations using GT-Power software are used to generate the operating maps. These maps show the maximum braking torque as well as maximum air motor torque in terms of air tank pressure and engine speed. Moreover, the resulting maps indicate the operating conditions under which each mode is more effective. Based on these maps, a power management strategy is developed to achieve improved fuel economy.
Technical Paper

Application of Damage Models in Bending and Hydroforming of Aluminum Alloy Tube

2004-03-08
2004-01-0835
This paper examines the application of damage models in tube bending and subsequent hydroforming of AlMg3.5Mn aluminum alloy tubes. An in-house Gurson-based damage model, incorporated within LS-DYNA, has been used for the simulations. The applied damage model contains several void nucleation and growth parameters that must be determined for each material. A simpler straight tube hydroforming process was considered first to check the damage parameters and predicted ductility. Then the model was applied to a sequence of bending and hydroforming. The damage history from pre-bending was mapped to the hydroforming stage, to allow prediction of the overall ductility. The applied forming parameters in the simulation were based on data extracted during the experimental tests. Finally, the numerical results were compared to the experimental data.
Technical Paper

Multi-Scale FE/Damage Percolation Modeling of Ductile Damage Evolution in Aluminum Sheet Forming

2004-03-08
2004-01-0742
A so-called damage percolation model is coupled with Gurson-based finite element (FE) approach in order to accommodate the high strain gradients and localized ductile damage. In doing so, void coalescence and final failure are suppressed in Gurson-based FE modeling while a measured second phase particle field is mapped onto the most damaged mesh area so that percolation modeling can be performed to capture ductile fracture in real sheet forming operations. It is revealed that void nucleation within particle clusters dominates ductile fracture in aluminum alloy sheet forming. Coalescence among several particle clusters triggered final failure of materials. A stretch flange forming is simulated with the coupled modeling.
Technical Paper

Numerical and Experimental Investigation of 5xxx Aluminum Alloy Stretch Flange Forming

2004-03-08
2004-01-1051
Stretch flange features are commonly found in the corner regions of commercial parts, such as window cutouts, where large strains can induce localization and necking. In this study, laboratory-scale stretch flange forming experiments on AA5182 and AA5754 were conducted to address the formability of these aluminum alloys under undergoing this specific deformation process. Two distinct cracking modes were found in the stretch flange samples. One is radial cracking at the inner edge of flange (cutout edge) while the other is circumferential cracking away from the inner edge at the punch profile radius. Numerical simulation of the stretch flange forming operations was conducted with an explicit finite element code-LS-DYNA. A coalescence-suppressed Gurson-based material model is used in the finite element model. Void coalescence and final failure in stretch flange is simulated through measured second-phase particle fields with a so-called damage percolation model.
Technical Paper

Dent Resistance of Medium Scale Aluminum Structural Assemblies

2001-03-05
2001-01-0757
This work outlines the evaluation of static and dynamic dent resistance of medium scale structural assemblies fabricated using AA6111 and AA5754. The assemblies fabricated attempt to mimic common automotive hood designs allowing for a parametric study of the support spacing, sheet thickness and panel curvature. Closure panels of AA6111, of two thicknesses (0.8, and 0.9mm), are bonded to re-usable inner panels fabricated using AA5754 to form the structural assemblies tested. While normal practice would use the same alloy for both the inner and the outer, in the current work, AA5754 was adopted for ease of welding. Numerical simulations were performed using LS DYNA. A comparison of experimental and numerically simulated results is presented. The study attempts to establish an understanding of the relationship between structural support conditions and resulting dent depths for both static and dynamic loading conditions.
Technical Paper

Simulation of Electromagnetic Forming of Aluminum Alloy Sheet

2001-03-05
2001-01-0824
Electromagnetic forming of aluminum alloys provides improved forming limits, minimal springback and rapid implementation. The ability to predict the minimum energy required in electromagnetic forming is essential in developing an efficient process. Understanding the development of the strain distribution over time in the blank is also highly desired. A numerical model is needed that offers insight into these areas and the electromagnetic forming process in general that cannot easily be extracted from experiments. To address these concerns, ANSYS/EMAG is used to model the time varying currents that are discharged through the coil in order to obtain the transient magnetic forces acting on the blank. The body forces caused by electromagnetic induction are then used as the boundary condition to model the high velocity deformation of the blank with LS-DYNA, an explicit dynamic finite element code.
Technical Paper

Evaluation of Small Scale Formability Results on Large Scale Parts: Aluminum Alloy Tailor Welded Blanks

2001-03-05
2001-01-0823
This paper investigates the application of standard formability testing results for aluminum alloy tailor welded blanks (TWB) to full size stampings. The limit strains obtained from formability testing are compared to measured strains in a larger scale part. The measured strains in the full scale part are also compared to predictions from finite element simulation.
Technical Paper

Weld Failure in Formability Testing of Aluminum Tailor Welded Blanks

2001-03-05
2001-01-0090
The present work investigates weld failure modes during formability tests of multi-gauge aluminum Tailor Welded Blanks (TWBs). The limiting dome height test is used to evaluate formability of TWBs. Three gauge combinations utilizing aluminum alloy 5754 sheets are considered (2 to 1 mm, 1.6 to 1 mm and 2 to 1.6 mm). Three weld orientations have been considered: transverse, longitudinal and 45°. Interaction of several factors determines the type of failure that occurs in a TWB specimen. These factors are weld orientation, morphology and distribution of weld defects, and the magnitude of constraint imposed by the thicker sheet to the thin sheet. The last factor depends on the difference in thickness of the sheet pair and is usually expressed in terms of gauge ratio. In general TWBs show two different types of fracture: weld failure and failure of the thin aluminum sheet. Only the former will be discussed in this paper.
Technical Paper

Real-Time Robust Lane Marking Detection and Tracking for Degraded Lane Markings

2017-03-28
2017-01-0043
Robust lane marking detection remains a challenge, particularly in temperate climates where markings degrade rapidly due to winter conditions and snow removal efforts. In previous work, dynamic Bayesian networks with heuristic features were used with the feature distributions trained using semi-supervised expectation maximization, which greatly reduced sensitivity to initialization. This work has been extended in three important respects. First, the tracking formulation used in previous work has been corrected to prevent false positives in situations where only poor RANSAC hypotheses were generated. Second, the null hypothesis is reformulated to guarantee that detected hypotheses satisfy a minimum likelihood. Third, the computational requirements have been greatly reduced by computing an upper bound on the marginal likelihood of all part hypotheses upon generation and rejecting parts with an upper bound less likely than the null hypothesis.
Technical Paper

Recognizing Driver Braking Intention with Vehicle Data Using Unsupervised Learning Methods

2017-03-28
2017-01-0433
Recently, the development of braking assistance system has largely benefit the safety of both driver and pedestrians. A robust prediction and detection of driver braking intention will enable driving assistance system response to traffic situation correctly and improve the driving experience of intelligent vehicles. In this paper, two types unsupervised clustering methods are used to build a driver braking intention predictor. Unsupervised machine learning algorithms has been widely used in clustering and pattern mining in previous researches. The proposed unsupervised learning algorithms can accurately recognize the braking maneuver based on vehicle data captured with CAN bus. The braking maneuver along with other driving maneuvers such as normal driving will be clustered and the results from different algorithms which are K-means and Gaussian mixture model (GMM) will be compared.
Technical Paper

Extended Range Electric Vehicle Powertrain Simulation, and Comparison with Consideration of Fuel Cell and Metal-Air Battery

2017-03-28
2017-01-1258
The automobile industry has been undergoing a transition from fossil fuels to a low emission platform due to stricter environmental policies and energy security considerations. Electric vehicles, powered by lithium-ion batteries, have started to attain a noticeable market share recently due to their stable performance and maturity as a technology. However, electric vehicles continue to suffer from two disadvantages that have limited widespread adoption: charging time and energy density. To mitigate these challenges, vehicle Original Equipment Manufacturers (OEMs) have developed different vehicle architectures to extend the vehicle range. This work seeks to compare various powertrains, including: combined power battery electric vehicles (BEV) (zinc-air and lithium-ion battery), zero emission fuel cell vehicles (FCV)), conventional gasoline powered vehicles (baseline internal combustion vehicle), and ICE engine extended range hybrid electric vehicle.
Technical Paper

Volumetric Tire Models for Longitudinal Vehicle Dynamics Simulations

2016-04-05
2016-01-1565
Dynamic modelling of the contact between the tires of automobiles and the road surface is crucial for accurate and effective vehicle dynamic simulation and the development of various driving controllers. Furthermore, an accurate prediction of the rolling resistance is needed for powertrain controllers and controllers designed to reduce fuel consumption and engine emissions. Existing models of tires include physics-based analytical models, finite element based models, black box models, and data driven empirical models. The main issue with these approaches is that none of these models offer the balance between accuracy of simulation and computational cost that is required for the model-based development cycle. To address this issue, we present a volumetric approach to model the forces/moments between the tire and the road for vehicle dynamic simulations.
Technical Paper

Impact of One Side Hydrophobic Gas Diffusion Layer on Water Removal Rate and Proton Exchange Membrane Fuel Cell Performance

2012-04-16
2012-01-1221
Proton exchange membrane fuel cell (PEMFC) is considered to be one of the best clean power sources for transportation application. Water management is a critical issue, conventionally achieved by coating the cell components with the hydrophobic materials. In this work, the effects of one surface-coated cathode gas diffusion layer (GDL) on water removal rate, droplet dynamics, and the cell performance have been studied. The coated GDL is fabricated by coating one side of raw GDL (SpectraCarb 2050-A) with 15 wt. % of polytetrafluoroethylene (PTFE) solution but the other side remains uncoated. The raw GDL is commercial one and made of carbon fiber. The contact angles (θ) on both sides of the coated and raw GDL are measured. The pore size distribution, and capillary pressure are measured for the GDL, studied using the method of standard porosimetry (MSP). Water removal rate is measured by using a 20 ml syringe barrel, wherein a 13 mm diameter GDL token is stuck on the barrel opening.
X