Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Symbolic Formulation of Multibody Dynamic Equations for Wheeled Vehicle Systems on Three-Dimensional Roads

2010-04-12
2010-01-0719
A method to improve the computational efficiency of analyzing wheeled vehicle systems on three-dimensional (3-D) roads has been developed. This was accomplished by creating a technique to incorporate the tire on a 3-D road in a multibody dynamics model of the vehicle with an approach that formulates the governing equations using symbolic formulation. For general handling analysis performed on the vehicle, the tire forces and moments are determined using a tire model that represents the tire as a set of mathematical expressions. Since these expressions need numerical values to determine the forces and moments, a symbolic solution does not exist. Therefore, the evaluation of the tire forces and moments needs to be done during simulation. However, symbolic operations can be used when the governing equations are formulated to develop an efficient method to evaluate these forces.
Journal Article

A New Adaptive Controller for Performance Improvement of Automotive Suspension Systems with MR Dampers

2014-04-01
2014-01-0052
A control algorithm is developed for active/semi-active suspensions which can provide more comfort and better handling simultaneously. A weighting parameter is tuned online which is derived from two components - slow and fast adaptation to assign weights to comfort and handling. After establishing through simulations that the proposed adaptive control algorithm can demonstrate a performance better than some controllers in prior-art, it is implemented on an actual vehicle (Cadillac STS) which is equipped with MR dampers and several sensors. The vehicle is tested on smooth and rough roads and over speed bumps.
Journal Article

Physics-Based Models, Sensitivity Analysis, and Optimization of Automotive Batteries

2013-10-14
2013-01-2560
The analysis of nickel metal hydride (Ni-MH) battery performance is very important for automotive researchers and manufacturers. The performance of a battery can be described as a direct consequence of various chemical and physical phenomena taking place inside the container. In this paper, a physics-based model of a Ni-MH battery will be presented. To analyze its performance, the efficiency of the battery is chosen as the performance measure, which is defined as the ratio of the energy output from the battery and the energy input to the battery while charging. Parametric sensitivity analysis will be used to generate sensitivity information for the state variables of the model. The generated information will be used to showcase how sensitivity information can be used to identify unique model behavior and how it can be used to optimize the capacity of the battery. The results will be validated using a finite difference formulation.
Journal Article

Improvement and Validation of Hybrid III Dummy Knee Finite Element Model

2015-04-14
2015-01-0449
The public Hybrid III family finite element models have been used in simulation of automotive safety research widely. The validity of an ATD finite element model is largely dependent on the accuracy of model structure and accurate material property parameters especially for the soft material. For Hybrid III 50th percentile male dummy model, the femur load is a vital parameter for evaluating the injury risks of lower limbs, so the importance of accuracy of knee subcomponent model is obvious. The objective of this work was to evaluate the accuracy of knee subcomponent model and improve the validity of it. Comparisons between knee physical model and knee finite element model were conducted for both structure and property of material. The inaccuracy of structure and the material model of the published model were observed.
Journal Article

Thermal Management of Lithium-Ion Pouch Cell with Indirect Liquid Cooling using Dual Cold Plates Approach

2015-04-14
2015-01-1184
The performance, life cycle cost, and safety of electric and hybrid electric vehicles (EVs and HEVs) depend strongly on their energy storage system. Advanced batteries such as lithium-ion (Li-ion) polymer batteries are quite viable options for storing energy in EVs and HEVs. In addition, thermal management is essential for achieving the desired performance and life cycle from a particular battery. Therefore, to design a thermal management system, a designer must study the thermal characteristics of batteries. The thermal characteristics that are needed include the surface temperature distribution, heat flux, and the heat generation from batteries under various charge/discharge profiles. Therefore, in the first part of the research, surface temperature distribution from a lithium-ion pouch cell (20Ah capacity) is studied under different discharge rates of 1C, 2C, 3C, and 4C.
Journal Article

Cooperative Least Square Parameter Identification by Consensus within the Network of Autonomous Vehicles

2016-04-05
2016-01-0149
In this paper, a consensus framework for cooperative parameter estimation within the vehicular network is presented. It is assumed that each vehicle is equipped with a dedicated short range communication (DSRC) device and connected to other vehicles. The improvement achieved by the consensus for parameter estimation in presence of sensor’s noise is studied, and the effects of network nodes and edges on the consensus performance is discussed. Finally, the simulation results of the introduced cooperative estimation algorithm for estimation of the unknown parameter of road condition is presented. It is shown that due to the faster dynamic of network communication, single agents’ estimation converges to the least square approximation of the unknown parameter properly.
Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Journal Article

The Influence of the Through-Thickness Strain Gradients on the Fracture Characterization of Advanced High-Strength Steels

2018-04-03
2018-01-0627
The development and calibration of stress state-dependent failure criteria for advanced high-strength steel (AHSS) and aluminum alloys requires characterization under proportional loading conditions. Traditional tests to construct a forming limit diagram (FLD), such as Marciniak or Nakazima tests, are based upon identifying the onset of strain localization or a tensile instability (neck). However, the onset of localization is strongly dependent on the through-thickness strain gradient that can delay or suppress the formation of a tensile instability so that cracking may occur before localization. As a result, the material fracture limit becomes the effective forming limit in deformation modes with severe through-thickness strain gradients, and this is not considered in the traditional FLD. In this study, a novel bending test apparatus was developed based upon the VDA 238-100 specification to characterize fracture in plane strain bending using digital image correlation (DIC).
Journal Article

Longitudinal Vehicle Dynamics Modeling and Parameter Estimation for Plug-in Hybrid Electric Vehicle

2017-03-28
2017-01-1574
System identification is an important aspect in model-based control design which is proven to be a cost-effective and time saving approach to improve the performance of hybrid electric vehicles (HEVs). This study focuses on modeling and parameter estimation of the longitudinal vehicle dynamics for Toyota Prius Plug-in Hybrid (PHEV) with power-split architecture. This model is needed to develop and evaluate various controllers, such as energy management system, adaptive cruise control, traction and driveline oscillation control. Particular emphasis is given to the driveline oscillations caused due to low damping present in PHEVs by incorporating flexibility in the half shaft and time lag in the tire model.
Technical Paper

An Augmented around View Monitor System Fusing Depth and Image Information during the Reversing Process

2020-04-14
2020-01-0095
The around view monitor (AVM) system for vehicles usually suffers from the distortion of surrounding objects caused by incomplete rectification and stitching, which seriously affects the driver's judgment of the surrounding environment during the reversing process. In response to solve this problem, an augmented around view monitor (AAVM) system fusing image and depth information is proposed, which highlights the point clouds of persons or vehicles at the rear of the vehicle. First, an around view image is generated from four fisheye cameras. Then, the calibration of multi TOF cameras is conducted to improve their accuracy of depth estimation and obtain extrinsic camera positions. Next, the 2D-driven object point cloud detection method is proposed to localize and segment object point clouds like vehicles or persons.
Technical Paper

A Personalized Deep Learning Approach for Trajectory Prediction of Connected Vehicles

2020-04-14
2020-01-0759
Forecasting the motion of the leading vehicle is a critical task for connected autonomous vehicles as it provides an efficient way to model the leading-following vehicle behavior and analyze the interactions. In this study, a personalized time-series modeling approach for leading vehicle trajectory prediction considering different driving styles is proposed. The method enables a precise, personalized trajectory prediction for leading vehicles with limited inter-vehicle communication signals, such as vehicle speed, acceleration, space headway, and time headway of the front vehicles. Based on the learning nature of human beings that a human always tries to solve problems based on grouping and similar experience, three different driving styles are first recognized based on an unsupervised clustering with a Gaussian Mixture Model (GMM).
Technical Paper

Toward High Automatic Driving by a Dynamic Optimal Trajectory Planning Method Based on High-Order Polynomials

2020-04-14
2020-01-0106
This paper intends to present a novel optimal trajectory planning method for obstacle avoidance on highways. Firstly, a mapping from the road Cartesian coordinate system to the road Frenet-based coordinate system is built, and the path lateral offset in the road Frenet-based coordinate system is represented by a function of quintic polynomial respecting the traveled distance along the road centerline. With different terminal conditions regarding its position, heading and curvature of the endpoint, and together with initial conditions of the starting point, the path planner generates a bunch of candidate paths via solving nonlinear equation sets numerically. A path selecting mechanism is further built which considers a normalized weighted sum of the path length, curvature, consistency with the previous path, as well as the road hazard risk.
Technical Paper

MTCNN-KCF-deepSORT:Driver Face Detection and Tracking Algorithm Based on Cascaded Kernel Correlation Filtering and Deep SORT

2020-04-14
2020-01-1038
The driver's face detection and tracking method important for Advanced Driver Assistance Systems (ADAS) and autonomous driving in various situations. The deep SORT algorithm has integrated appearance information, the motion model and the intersection-over-union (IOU) distance methods, and has been applied to face tracking, but it depends on detection information in every frame. Once the detection information lacks, the deep SORT algorithm will wait until the target detects bounding boxes appear again, even if the target didn’t disappear or shield. Hence, we propose to use a new tracker that not completely depend on the detection algorithm to cascade with the deep SORT algorithm to realize stable driver's face tracking. At first, the driver's face detection and tracking will be accomplished by the MTCNN-deep-SORT algorithm.
Journal Article

Evaluation of Aerodynamic Noise Generated in a Miniature Car Using Numerical Simulation

2009-04-20
2009-01-0478
Aerodynamic noise generated in a miniature car had been evaluated using numerical simulation. Large Eddy Simulation (LES) was applied to analyze the transient flow field and the Ffowcs Williams-Hawkings (FW-H) acoustic analogy was employed to conduct acoustic analysis. The time accurate flow data was obtained using a finite volume flow solver on an unstructured grid. The flow field around the rear view mirror was obtained by numerical for two cases with different side view mirrors. Moreover, the distribution of acoustic source was predicted on side windows, and the aerodynamic noise was lowed through optimizing the shape of the rear view mirror and some experiments were done to validate the effect. Present study ascertained the feasibility and applicability of finite volume method (FVM) with SGS model towards prediction of aerodynamic noise generated in production vehicle.
Journal Article

Impact Testing of a Hot-Formed B-Pillar with Tailored Properties - Experiments and Simulation

2013-04-08
2013-01-0608
This paper presents the numerical validation of the impact response of a hot formed B-pillar component with tailored properties. A laboratory-scale B-pillar tool is considered with integral heating and cooling sections in an effort to locally control the cooling rate of an austenitized blank, thereby producing a part with tailored microstructures to potentially improve the impact response of these components. An instrumented falling-weight drop tower was used to impact the lab-scale B-pillars in a modified 3-point bend configuration to assess the difference between a component in the fully hardened (martensitic) state and a component with a tailored region (consisting of bainite and ferrite). Numerical models were developed using LS-DYNA to simulate the forming and thermal history of the part to estimate the final thickness and strain distributions as well as the predicted microstructures.
Technical Paper

Effects of Bead Surface Preparation on Friction in the Drawbead Test

1991-02-01
910511
The effects of bead surface roughness on friction, die pickup, and sheet surface damage in the drawbead test were investigated. Beads of HRC 58 hardness were prepared from centerless-ground rod by circumferential honing to 0.05 μm roughness, followed by finishing with 100, 400, or 600 grit SiC paper in the axial direction. Paraffinic base oils with viscosities of 4.5, 30, and 285 mm2/s were used neat and in conjunction with stearic acid. The effects of bead roughness depended on the nature of metal transfer, especially its distribution and firmness of attachment. The presence of a boundary additive increased, decreased, or had no effect on friction depending on the particular coating and bead finish.
Technical Paper

Material Model Selection for Crankshaft Deep Rolling Process Numerical Simulation

2020-04-14
2020-01-1078
Residual stress prediction arising from manufacturing processes provides paramount information for the fatigue performance assessment of components subjected to cyclic loading. The determination of the material model to be applied in the numerical model should be taken carefully. This study focuses on the estimation of residual stresses generated after deep rolling of cast iron crankshafts. The researched literature on the field employs the available commercial material codes without closer consideration on their reverse loading capacities. To mitigate this gap, a single element model was used to compare potential material models with tensile-compression experiments. The best fit model was then applied to a previously developed crankshaft deep rolling numerical model. In order to confront the simulation outcomes, residual stresses were measured in two directions on real crankshaft specimens that passed through the same modeled deep rolling process.
Journal Article

Parameter Identification and Validation for Combined Slip Tire Models Using a Vehicle Measurement System

2018-04-03
2018-01-1339
It is imperative to have accurate tire models when trying to control the trajectory of a vehicle. With the emergence of autonomous vehicles, it is more important than ever before to have models that predict how the vehicle will operate in any situation. Many different types of tire models have been developed and validated, including physics-based models such as brush models, black box models, finite element-based models, and empirical models driven by data such as the Magic Formula model. The latter is widely acknowledged to be one of the most accurate tire models available; however, collecting data for this model is not an easy task. Collecting data is often accomplished through rigorous testing in a dedicated facility. This is a long and expensive procedure which generally destroys many tires before a comprehensive data set is acquired. Using a Vehicle Measurement System (VMS), tires can be modeled through on-road data alone.
Journal Article

A New Control Strategy for Electric Power Steering on Low Friction Roads

2014-04-01
2014-01-0083
In vehicles equipped with conventional Electric Power Steering (EPS) systems, the steering effort felt by the driver can be unreasonably low when driving on slippery roads. This may lead inexperienced drivers to steer more than what is required in a turn and risk losing control of the vehicle. Thus, it is sensible for tire-road friction to be accounted for in the design of future EPS systems. This paper describes the design of an auxiliary EPS controller that manipulates torque delivery of current EPS systems by supplying its motor with a compensation current controlled by a fuzzy logic algorithm that considers tire-road friction among other factors. Moreover, a steering system model, a nonlinear vehicle dynamics model and a Dugoff tire model are developed in MATLAB/Simulink. Physical testing is conducted to validate the virtual model and confirm that steering torque decreases considerably on low friction roads.
Technical Paper

Multi-Objective Discrete Robust Optimization for Pedestrian Head Protection

2020-04-14
2020-01-0934
Optimization design for vehicle front-end structures has proven rather essential and been extensively used to improve the vehicle performance. Nevertheless, the front-end structure needs to meet the requirement of both pedestrian safety and structural stiffness which are somewhat contradicting to each other. Furthermore, an optimal design could become less meaningful or even unacceptable when some uncertainties present. In the paper, a multi-objective discrete robust optimization (MODRO) algorithm is used to minimize the injury of head and maximize the structural stiffness involving uncertainties. MODRO algorithm is achieved by coupling grey relational analysis (GRA) and principal component analysis (PCA) with Taguchi method. The optimized result shows that the MODRO algorithm improved performance of pedestrian head injury and robustness of the vehicle front-end structure.
X