Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Stator Side Voltage Regulation of Permanent Magnet Generators

2009-11-10
2009-01-3095
Permanent magnet AC generators are robust, inexpensive, and efficient compared to wound-field synchronous generators with brushless exciters. Their application in variable-speed applications is made difficult by the variation of the stator voltage with shaft speed. This paper presents the use of stator-side reactive power injection as a means of regulating the stator voltage. Design-oriented analysis of machine performance for this mode of operation identifies an appropriate level of machine saliency that enables excellent terminal voltage regulation over a specified speed and load range, while minimizing stator current requirements. This paper demonstrates that the incorporation of saliency into the permanent magnet generator can significantly reduce the size of the reactive current source that is required to regulate the stator voltage during operation over a wide range of speeds and loads.
Journal Article

Gossip Networks: The Enabler for Sparsely Populated VANETs

2011-04-12
2011-01-0046
The future deployment of safety-oriented Dedicated Short Range Communications (DSRC) technology may be hindered due to the so-called “Market Penetration” problem: as a wireless network built from scratch, there is lack of value to consumers who are early adopters. In this paper, we explore potential applications that can be supported during the initial phase of vehicular ad-hoc network (VANET) deployment, i.e., sparsely populated VANETs. We show that delay-insensitive information sharing applications are promising since they only require opportunistic network connections (in contrast to safety applications that require “always on” connectivity). This is done via “gossip spread” information distribution protocols by which DSRC vehicles cache and then exchange the information while in range of other DSRC vehicles or road side units. This approach is especially attractive since the number of communicating vehicles will be very small during early deployment years.
Journal Article

Plug-In Electric Vehicle Charge Time Robustness

2011-04-12
2011-01-0065
With the introduction of plug-in electric vehicles (PEVs), the conventional mindset of “fill-up time” will be challenged as customers top off their battery packs. For example, using a standard 120VAC outlet, it may take over 10hrs to achieve 40-50 miles of EV range-making range anxiety a daunting reality for EV owners. As customers adapt to this new mindset of charge time, it is critical that automotive OEMs supply the consumer with accurate charge time estimates. Charge time accuracy relies on a variety of parameters: battery pack size, power source, electric vehicle supply equipment (EVSE), on-board charging equipment, ancillary controller loads, battery temperature, and ambient temperature. Furthermore, as the charging events may take hours, the initial conditions may vary throughout a plug-in charge (PIC). The goal of this paper is to characterize charging system sensitivities and promote best practices for charge time estimations.
Journal Article

Structural Optimization for Vehicle Dynamics Loadcases

2011-04-12
2011-01-0058
As mass reduction becomes an increasingly important enabler for fuel economy improvement, having a robust structural development process that can comprehend Vehicle Dynamics-specific requirements is correspondingly important. There is a correlation between the stiffness of the body structure and the performance of the vehicle when evaluated for ride and handling. However, an unconstrained approach to body stiffening will result in an overly-massive body structure. In this paper, the authors employ loads generated from simulation of quasi-static and dynamic vehicle events in ADAMS, and exercise structural finite element models to recover displacements and deflected shapes. In doing so, a quantitative basis for considering structural vehicle dynamics requirements can be established early in the design/development process.
Journal Article

Structural Evaluation of an Experimental Aluminum/Magnesium Decklid

2011-04-12
2011-01-0075
Experimental decklids for the Cadillac STS sedan were made with Al AA5083 sheet outer panels and Mg AZ31B sheet inner panels using regular-production forming processes and hardware. Joining and coating processes were developed to accommodate the unique properties of Mg. Assembled decklids were evaluated for dimensional accuracy, slam durability, and impact response. The assemblies performed very well in these tests. Explicit and implicit finite element simulations of decklids were conducted, and showed that the Al/Mg decklids have good stiffness and strength characteristics. These results suggest the feasibility of using Mg sheet closure panels from a structural perspective.
Journal Article

Development of the Combustion System for General Motors' High-Efficiency Range Extender Ecotec Small Gas Engine

2015-04-14
2015-01-1272
General Motors has developed an all-new Ecotec 1.5 L range extender engine for use in the 2016 next generation Voltec propulsion system. This engine is part of a new Ecotec family of small displacement gasoline engines introduced in the 2015 model year. Major enhancements over the range extender engine in the current generation Voltec propulsion system include the adoption of direct injection (DI), cooled external exhaust gas recirculation (EGR), and a high 12.5:1 geometric compression ratio (CR). Additional enhancements include the adoption of high-authority phasers on both the intake and exhaust camshafts, and an integrated exhaust manifold (IEM). The combination of DI with cooled EGR has enabled significant thermal efficiency gains over the 1.4 L range extender engine in the current generation Voltec propulsion system at high engine loads.
Journal Article

Health Ready Components-Unlocking the Potential of IVHM

2016-04-05
2016-01-0075
Health Ready Components are essential to unlocking the potential of Integrated Vehicle Health Management (IVHM) as it relates to real-time diagnosis and prognosis in order to achieve lower maintenance costs, greater asset availability, reliability and safety. IVHM results in reduced maintenance costs by providing more accurate fault isolation and repair guidance. IVHM results in greater asset availability, reliability and safety by recommending preventative maintenance and by identifying anomalous behavior indicative of degraded functionality prior to detection of the fault by other detection mechanisms. The cost, complexity and effectiveness of the IVHM system design, deployment and support depend, to a great extent, on the degree to which components and subsystems provide the run-time data needed by IVHM and the design time semantic data to allow IVHM to interpret those messages.
Journal Article

Comparative Study on Various Methods for Measuring Engine Particulate Matter Emissions

2008-06-23
2008-01-1748
Studies have shown that there are a significant number of chemical species present in engine exhaust particulate matter emissions. Additionally, the majority of current world-wide regulatory methods for measuring engine particulate emissions are gravimetrically based. As modern engines considerably reduce particulate mass emissions, these methods become less stable and begin to display higher levels of measurement uncertainty. In this study, a characterization of mass emissions from three heavy-duty diesel engines, with a range of particulate emission levels, was made in order to gain a better understanding of the variability and uncertainty associated with common mass measurement methods, as well as how well these methods compare with each other. Two gravimetric mass measurement methods and a reconstructed mass method were analyzed as part of the present study.
Journal Article

Pathline Analysis of Full-cycle Four-stroke HCCI Engine Combustion Using CFD and Multi-Zone Modeling

2008-04-14
2008-01-0048
This paper investigates flow and combustion in a full-cycle simulation of a four-stroke, three-valve HCCI engine by visualizing the flow with pathlines. Pathlines trace massless particles in a transient flow field. In addition to visualization, pathlines are used here to trace the history, or evolution, of flow fields and species. In this study evolution is followed from the intake port through combustion. Pathline analysis follows packets of intake charge in time and space from induction through combustion. The local scalar fields traversed by the individual packets in terms of velocity magnitude, turbulence, species concentration and temperatures are extracted from the simulation results. The results show how the intake event establishes local chemical and thermal environments in-cylinder and how the species respond (chemically react) to the local field.
Journal Article

Detailed Effects of a Diesel Particulate Filter on the Reduction of Chemical Species Emissions

2008-04-14
2008-01-0333
Diesel particulate filters are designed to reduce the mass emissions of diesel particulate matter and have been proven to be effective in this respect. Not much is known, however, about their effects on other unregulated chemical species. This study utilized source dilution sampling techniques to evaluate the effects of a catalyzed diesel particulate filter on a wide spectrum of chemical emissions from a heavy-duty diesel engine. The species analyzed included both criteria and unregulated compounds such as particulate matter (PM), carbon monoxide (CO), hydrocarbons (HC), inorganic ions, trace metallic compounds, elemental and organic carbon (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and other organic compounds. Results showed a significant reduction for the emissions of PM mass, CO, HC, metals, EC, OC, and PAHs.
Journal Article

Investigation of Spray Evaporation and Numerical Model Applied for Fuel-injection Small Engines

2008-09-09
2008-32-0064
The purpose of this research is to develop a prediction technique that can be used in the development of port fuel-injection (hereinafter called PFI) gasoline engines, especially for general purpose small utility engines. Utility engines have two contradictory desirable aspects: compactness and high-power at wide open throttle. Therefore, applying the port fuel injector to utility engines presents a unique intractableness that is different from application to automobiles or motorcycles. At the condition of wide open throttle, a large amount of fuel is required to output high power, and injected fuel is deposited as a wall film on the intake port wall. Despite the fuel rich condition, emissions are required to be kept under a certain level. Thus, it is significant to understand the wall film phenomenon and control film thickness in the intake ports.
Journal Article

High Resolution Scalar Dissipation Measurements in an IC Engine

2009-04-20
2009-01-0662
The ability to make fully resolved turbulent scalar field measurements has been demonstrated in an internal combustion engine using one-dimensional fluorobenzene fluorescence measurements. Data were acquired during the intake stroke in a motored engine that had been modified such that each intake valve was fed independently, and one of the two intake streams was seeded with the fluorescent tracer. The scalar energy spectra displayed a significant inertial subrange that had a −5/3 wavenumber power dependence. The scalar dissipation spectra were found to extend in the high-wavenumber regime, to where the magnitude was more than two decades below the peak value, which indicates that for all practical purposes the measurements faithfully represent all of the scalar dissipation in the flow.
Journal Article

VOLTEC Battery System for Electric Vehicle with Extended Range

2011-04-12
2011-01-1373
Mid 2006 a study group at General Motors developed the concept for the electric vehicle with extended range (EREV),. The electric propulsion system should receive the electrical energy from a rechargeable energy storage system (RESS) and/or an auxiliary power unit (APU) which could either be a hydrogen fuel cell or an internal combustion engine (ICE) driven generator. The study result was the Chevrolet VOLT concept car in the North American Auto Show in Detroit in 2007. The paper describes the requirements, concepts, development and the performance of the battery used as RESS for the ICE type VOLTEC propulsion system version of the Chevrolet Volt. The key requirement for the RESS is to provide energy to drive an electric vehicle with “no compromised performance” for 40 miles. Extended Range Mode allows for this experience to continue beyond 40 miles.
Journal Article

An Analysis of Floating Piston Pin

2011-04-12
2011-01-1407
Presented in the paper is a comprehensive analysis for floating piston pin. It is more challenging because it is a special type of journal bearing where the rotation of the journal is coupled with the friction between the journal and the bearing. In this analysis, the multi-degree freedom mass-conserving mixed-EHD equations are solved to determine the coupled pin rotation and friction. Other bearing characteristics, such as minimum film thickness, pin secondary motions in both connecting-rod small-end bearing and piston pin-boss bearing, power loss etc are also determined. The mechanism for floating pin to have better scuffing resistance is discovered. The theoretical and numerical model is implemented in the GM internal software FLARE (Friction and Lubrication Analysis for Reciprocating Engines).
Journal Article

Analysis of Reservoir Pressure Decay, Velocity and Concentrations Fields of Natural Gas Venting from Pressurized Reservoir into the Atmosphere

2011-04-12
2011-01-0252
Compressed natural gas (CNG) currently is used as an alternative fuel for internal combustion engines in motor vehicles. This paper presents results of an analysis of leaks from a model isolated section of CNG fuel system. Discharge of CNG was modeled as vent flow of a real gas hydrocarbon mixture through an orifice from a reservoir with finite volume. Pressures typically used in CNG fuel systems result in choked flow for gas venting directly to atmosphere, producing an under-expanded, momentum-dominated, turbulent free jet with well defined velocity and concentration fields. This paper presents results of analyses of reservoir pressure decay, and vent flow and concentrations fields for CNG venting from a pressurized reservoir into the atmosphere. A combination of empirically-derived analytical relationships and detailed two-dimensional high resolution computational fluid dynamic modeling was used to determine the velocity and concentrations fields of the resulting CNG jet.
Journal Article

Fundamental Approach to Investigate Pre-Ignition in Boosted SI Engines

2011-04-12
2011-01-0340
A comprehensive experimental and theoretical approach was undertaken to understand the phenomenon of pre-ignition and to assess parameters to improve or even eliminate it completely. Oil mixing with fuel was identified as the leading theory of self ignition of the fuel. End of compression temperature has to meet a minimum level for pre-ignition to take place. In this work a comprehensive list of parameters were identified that have a direct and crucial role in the onset of pre-ignition including liner wetting, injection targeting, stratification, mixture motion and oil formulation. Many secondary effects were identified including ring dynamics, ring tension, spark plug electrode temperature and coolant temperature. CFD has been extensively used to understand test results including wall film, A/F ratio distribution and temperature at the end of compression when looked at in the context of fuel evaporation and mixing.
Journal Article

Challenges in Real Time Controls Simulation (Hardware-In-the-Loop) in Active Safety for Subsystem Level Software Verification

2011-04-12
2011-01-0450
As the new features for driver assistance and active safety systems are growing rapidly in vehicles, the simulation within a virtual environment has become a necessity. The current active safety system consists of Electronic Control Units (ECUs) which are coupled to camera and radar sensors. Two methods of implementation exists, integrated sensors with control modules or separation of sensors form control modules. The subsystem integration testing poses new challenges for virtual environment for simulation of active safety features. The comprehensive simulation environment for integration testing consists of chassis controls, powertrain, driver assistance, body and displays controllers. Additional complexity in the system is the serial communication strategy. Multiple communication protocols such as GMLAN, LIN, standard CAN, and Flexray could be present within the same vehicle topology.
Journal Article

Virtual Manufacturability Analyzer for Casting Components

2011-04-12
2011-01-0528
There is an increasing demand in automated manufacturability analysis of metal castings at the initial stages of their design. This paper presents a system developed for virtual manufacturability analysis of casting components. The system can be used by a casting designer to evaluate manufacturability of a part designed for various manufacture processes including casting, heat treatment, and machining. The system uses computational geometrics and geometric reasoning to extract manufacturing features and geometry characteristics from a part CAD model. It uses an expert system and a design database consisting of metal casting, heat treatment and machining process knowledge and rules to present manufacturability analysis results and advice to the designer. Application of the system is demonstrated for the manufacturability assessment of automotive cast aluminum components.
Journal Article

Boundary Condition Effect on the Correlation of an Acoustic Finite Element Passenger Compartment Model

2011-04-12
2011-01-0506
Three different acoustic finite element models of an automobile passenger compartment are developed and experimentally assessed. The three different models are a traditional model, an improved model, and an optimized model. The traditional model represents the passenger and trunk compartment cavities and the coupling between them through the rear seat cavity. The improved model includes traditional acoustic models of the passenger and trunk compartments, as well as equivalent-acoustic finite element models of the front and rear seats, parcel shelf, door volumes, instrument panel, and trunk wheel well volume. An optimized version of the improved acoustic model is developed by modifying the equivalent-acoustic properties. Modal analysis tests of a vehicle were conducted using loudspeaker excitation to identify the compartment cavity modes and sound pressure response to 500 Hz to assess the accuracy of the acoustic models.
Journal Article

High Temperature Brake Cooling - Characterization for Brake System Modeling in Race Track and High Energy Driving Conditions

2011-04-12
2011-01-0566
At elevated temperatures, such as those encountered under race track or fade test conditions, the closed-form solution to the lumped capacitance model for characterizing brake cooling (fitted to a standard cooling test temperature range) tends to break down and provide an inaccurate representation of brake rotor cooling behavior. Accurate prediction of cooling is fundamental to brake system component sizing and selection of materials at the early stages of a vehicle program; this is especially true of a high performance vehicle with track performance requirements. To this end, alternative approaches to characterizing brake cooling have been examined to determine their suitability for use in measurement and simulation of brake performance.
X