Refine Your Search

Topic

Author

Search Results

Journal Article

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

2009-06-15
2009-01-1790
Increasing interest in biofuels—specifically, biodiesel as a pathway to energy diversity and security—have necessitated the need for research on the performance and utilization of these fuels and fuel blends in current and future vehicle fleets. One critical research area is related to achieving a full understanding of the impact of biodiesel fuel blends on advanced emission control systems. In addition, the use of biodiesel fuel blends can degrade diesel engine oil performance and impact the oil drain interval requirements. There is limited information related to the impact of biodiesel fuel blends on oil dilution. This paper assesses the oil dilution impacts on an engine operating in conjunction with a diesel particle filter (DPF), oxides of nitrogen (NOx) storage, a selective catalytic reduction (SCR) emission control system, and a 20% biodiesel (soy-derived) fuel blend.
Journal Article

Exploring the Relationship Between Octane Sensitivity and Heat-of-Vaporization

2016-04-05
2016-01-0836
The latent heat-of-vaporization (HoV) of blends of biofuel and hydrocarbon components into gasolines has recently experienced expanded interest because of the potential for increased HoV to increase fuel knock resistance in direct-injection (DI) engines. Several studies have been conducted, with some studies identifying an additional anti-knock benefit from HoV and others failing to arrive at the same conclusion. Consideration of these studies holistically shows that they can be grouped according to the level of fuel octane sensitivity variation within their fuel matrices. When comparing fuels of different octane sensitivity significant additional anti-knock benefits associated with HoV are sometimes observed. Studies that fix the octane sensitivity find that HoV does not produce additional anti-knock benefit. New studies were performed at ORNL and NREL to further investigate the relationship between HoV and octane sensitivity.
Journal Article

Review: Fuel Volatility Standards and Spark-Ignition Vehicle Driveability

2016-03-14
2016-01-9072
Spark-ignition engine fuel standards have been put in place to ensure acceptable hot and cold weather driveability (HWD and CWD). Vehicle manufacturers and fuel suppliers have developed systems that meet our driveability requirements so effectively that drivers overwhelmingly find that their vehicles reliably start up and operate smoothly and consistently throughout the year. For HWD, fuels that are too volatile perform more poorly than those that are less volatile. Vapor lock is the apparent cause of poor HWD, but there is conflicting evidence in the literature as to where in the fuel system it occurs. Most studies have found a correlation between degraded driveability and higher dry vapor pressure equivalent or lower TV/L = 20, and less consistently with a minimum T50. For CWD, fuels with inadequate volatility can cause difficulty in starting and rough operation during engine warmup.
Journal Article

Biodiesel Effects on U.S. Light-Duty Tier 2 Engine and Emission Control Systems - Part 2

2009-04-20
2009-01-0281
Raising interest in Diesel powered passenger cars in the United States in combination with the government mandated policy to reduce dependency of foreign oil, leads to the desire of operating Diesel vehicles with Biodiesel fuel blends. There is only limited information related to the impact of Biodiesel fuels on the performance of advanced emission control systems. In this project the implementation of a NOx storage and a SCR emission control system and the development for optimal performance are evaluated. The main focus remains on the discussion of the differences between the fuels which is done for the development as well as useful life aged components. From emission control standpoint only marginal effects could be observed as a result of the Biodiesel operation. The NOx storage catalyst results showed lower tailpipe emissions which were attributed to the lower exhaust temperature profile during the test cycle. The SCR catalyst tailpipe results were fuel neutral.
Journal Article

Biodiesel Impact on Engine Lubricant Dilution During Active Regeneration of Aftertreatment Systems

2011-12-06
2011-01-2396
Experiments were conducted with ultra low sulfur diesel (ULSD) and 20% biodiesel blends (B20) to compare lube oil dilution levels and lubricant properties for systems using late in-cylinder fuel injection for aftertreatment regeneration. Lube oil dilution was measured by gas chromatography (GC) following ASTM method D3524 to measure diesel content, by Fourier transform infrared (FTIR) spectrometry following a modified ASTM method D7371 to measure biodiesel content, and by a newly developed back-flush GC method that simultaneously measures both diesel and biodiesel. Heavy-duty (HD) engine testing was conducted on a 2008 6.7L Cummins ISB equipped with a diesel oxidation catalyst (DOC) and diesel particle filter (DPF). Stage one of engine testing consisted of 10 consecutive repeats of a forced DPF regeneration event. This continuous operation with late in-cylinder fuel injection served as a method to accelerate lube-oil dilution.
Journal Article

Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

2011-04-12
2011-01-1136
It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil-derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter.
Journal Article

Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

2012-09-24
2012-01-1984
The objective of this research project was to compare the emissions of oxides of nitrogen (NOx) from transit buses on as many as five different fuels and three standard transit duty cycles to establish if there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Prior studies have shown that B20 can cause a small but significant increase in NOx emissions for some engines and duty cycles. Six buses spanning engine build years 1998 to 2011 were tested on the National Renewable Energy Laboratory's Renewable Fuels and Lubricants research laboratory's heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic [California Air Resources Board (CARB)] diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles.
Journal Article

Evaluation of Fuel-Borne Sodium Effects on a DOC-DPF-SCR Heavy-Duty Engine Emission Control System: Simulation of Full-Useful Life

2016-10-17
2016-01-2322
For renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent to exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement.
Journal Article

Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines

2017-03-28
2017-01-0868
We describe a study to identify potential biofuels that enable advanced spark ignition (SI) engine efficiency strategies to be pursued more aggressively. A list of potential biomass-derived blendstocks was developed. An online database of properties and characteristics of these bioblendstocks was created and populated. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a bioblendstock met the requirements for advanced SI engines. Criteria included melting point (or cloud point) < -10°C and boiling point (or T90) <165°C. Compounds insoluble or poorly soluble in hydrocarbon were eliminated from consideration, as were those known to cause corrosion (carboxylic acids or high acid number mixtures) and those with hazard classification as known or suspected carcinogens or reproductive toxins.
Journal Article

Heat of Vaporization Measurements for Ethanol Blends Up To 50 Volume Percent in Several Hydrocarbon Blendstocks and Implications for Knock in SI Engines

2015-04-14
2015-01-0763
The objective of this work was to measure knock resistance metrics for ethanol-hydrocarbon blends with a primary focus on development of methods to measure the heat of vaporization (HOV). Blends of ethanol at 10 to 50 volume percent were prepared with three gasoline blendstocks and a natural gasoline. Performance properties and composition of the blendstocks and blends were measured, including research octane number (RON), motor octane number (MON), net heating value, density, distillation curve, and vapor pressure. RON increases upon blending ethanol but with diminishing returns above about 30 vol%. Above 30% to 40% ethanol the curves flatten and converge at a RON of about 103 to 105, even for the much lower RON NG blendstock. Octane sensitivity (S = RON - MON) also increases upon ethanol blending. Gasoline blendstocks with nearly identical S can show significantly different sensitivities when blended with ethanol.
Journal Article

Effect of Accelerated Aging Rate on the Capture of Fuel-Borne Metal Impurities by Emissions Control Devices

2014-04-01
2014-01-1500
Small impurities in the fuel can have a significant impact on the emissions control system performance over the lifetime of the vehicle. Of particular interest in recent studies has been the impact of sodium, potassium, and calcium that can be introduced either through fuel constituents, such as biodiesel, or as lubricant additives. In a collaboration between the National Renewable Energy Laboratory and the Oak Ridge National Laboratory, a series of accelerated aging studies have been performed to understand the potential impact of these metals on the emissions control system. This paper explores the effect of the rate of accelerated aging on the capture of fuel-borne metal impurities in the emission control devices and the subsequent impact on performance. Aging was accelerated by doping the fuel with high levels of the metals of interest. Three separate evaluations were performed, each with a different rate of accelerated aging.
Technical Paper

Emissions from Heavy-Duty Diesel Engine with EGR using Fuels Derived from Oil Sands and Conventional Crude

2003-10-27
2003-01-3144
The exhaust emissions from a single-cylinder version of a heavy-duty diesel engine with exhaust gas recirculation (EGR) were studied using 12 diesel fuels derived from oil sands and conventional sources. The test fuels were blended from 22 refinery streams to produce four fuels (two from each source) at three different total aromatic levels (10, 20, and 30% by mass). The cetane numbers were held constant at 43. Exhaust emissions were measured using the AVL eight-mode steady-state test procedure. PM emissions were accurately modeled by a single regression equation with two predictors, total aromatics and sulphur content. Sulphate emissions were found to be independent of the type of sulphur compound in the fuel. NOx emissions were accurately modeled by a single regression equation with total aromatics and density as predictor variables. PM and NOx emissions were significantly significantly affected by fuel properties, but crude oil source did not play a role.
Technical Paper

Fuel Additive and Blending Approaches to Reducing NOx Emissions from Biodiesel

2002-05-06
2002-01-1658
Blending of 20% biodiesel with petroleum diesel is well known to cause a significant reduction in PM emissions but also can cause NOx emissions to increase by 1 to 3 percent. This study has examined a number of approaches for NOx reduction for 20% biodiesel/petroleum diesel blends (B20). These approaches included blending with a nominally 10% aromatic diesel, zero aromatic Fisher-Tropsch (FT) diesel, and use of fuel additives. Biodiesel produced from soybean oil and from yellow grease was examined. Testing was conducted in at 1991 DDC Series 60 truck engine using the U.S. heavy-duty FTP. Emissions of NOx, PM, CO, and THC are reported. Relative to certification diesel the B20 fuels exhibited 20% lower PM emissions but 3.3 and 1% higher NOx emissions for soy and yellow grease based blends, respectively. The 10% aromatic fuel exhibited 12% lower PM and 6% lower NOx. FT diesel had the lowest emissions with a 33% reduction in PM and 16% lower NOx.
Technical Paper

Fischer-Tropsch Diesel Fuels - Properties and Exhaust Emissions: A Literature Review

2003-03-03
2003-01-0763
Natural gas, coal, and biomass can be converted to diesel fuel through Fischer-Tropsch (F-T) processes. Variations of the F-T process and/or product work-up can be used to tailor the fuel properties to meet end-users needs. Regardless of feedstock or process, F-T diesel fuels typically have a number of very desirable properties. This review describes typical F-T diesel fuel properties, discusses how these fuel properties impact pollutant emissions, and draws together data from known engine and chassis dynamometer studies of emissions. The comparison of fuel properties reveals that F-T diesel fuel is typically one of two types - a very high cetane number (>74), zero aromatic product or a moderate cetane (∼60), low aromatic (≤15%) product. The very high cetane fuels typically have less desirable low temperature properties while the moderate cetane fuels have cold flow properties more typical of conventional diesel fuels.
Technical Paper

Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends

2005-05-11
2005-01-2193
Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent).
Technical Paper

King County Metro - Allison Hybrid Electric Transit Bus Testing

2006-10-31
2006-01-3570
Chassis dynamometer testing of two 60 foot articulated transit busses, one conventional and one hybrid, was conducted at the National Renewable Energy Laboratory's, ReFUEL facility. Both test vehicles were 2004 New Flyer busses powered by Caterpillar C9 8.8L engines, with the hybrid vehicle incorporating a GM-Allison advanced hybrid electric drivetrain. Both vehicles also incorporated an oxidizing diesel particulate filter. The fuel economy and emissions benefits of the hybrid vehicle were evaluated over four driving cycles; Central Business District (CBD), Orange County (OCTA), Manhattan (MAN) and a custom test cycle developed from in-use data of the King County Metro (KCM) fleet operation. The hybrid vehicle demonstrated the highest improvement in fuel economy (mpg basis) over the low speed, heavy stop-and-go driving conditions of the Manhattan test cycle (74.6%) followed by the OCTA (50.6%), CBD (48.3%) and KCM (30.3%).
Technical Paper

Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

2013-04-08
2013-01-0513
Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. Using an accelerated aging procedure, a set of production exhaust systems from a 2011 Ford F250 equipped with a 6.7L diesel engine have been aged to an equivalent of 150,000 miles of thermal aging and metal exposure. These exhaust systems included a diesel oxidation catalyst (DOC), selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ULSD containing no measureable metals, B20 containing sodium, B20 containing potassium and B20 containing calcium. Metals levels were selected to simulate the maximum allowable levels in B100 according to the ASTM D6751 standard. Analysis of the aged catalysts included Federal Test Procedure emissions testing with the systems installed on a Ford F250 pickup, bench flow reactor testing of catalyst cores, and electron probe microanalysis (EPMA).
Technical Paper

Diesel and CNG Transit Bus Emissions Characterization by Two Chassis Dynamometer Laboratories: Results and Issues

1999-05-03
1999-01-1469
Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found that oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more.
Technical Paper

Fuel Property Effects of a Broad Range of Potential Biofuels on Mixing Control Compression Ignition Engine Performance and Emissions

2021-04-06
2021-01-0505
Conventional diesel engines will continue to hold a vital role in the heavy- and medium-duty markets for the transportation of goods along with many other uses. The ability to offset traditional diesel fuels with low-net-carbon biofuels could have a significant impact on reducing the carbon footprint of these vehicles. A prior study screened several hundred candidate biofuel blendstocks based on required diesel blendstock properties and identified 12 as the most promising. Eight representative biofuel blendstocks were blended at a 30% volumetric concentration with EPA certification ultra-low-sulfur diesel (ULSD) and were investigated for emissions and fuel efficiency performance. This study used a single cylinder engine (based on the Ford 6.7L engine) using Conventional Diesel Combustion (CDC), also known as Mixing Control Compression Ignition (MCCI). The density, cetane number, distillation curve and sooting tendency (using the yield sooting index method) of the fuels were measured.
Journal Article

Knock Resistance and Fine Particle Emissions for Several Biomass-Derived Oxygenates in a Direct-Injection Spark-Ignition Engine

2016-04-05
2016-01-0705
Several high octane number oxygenates that could be derived from biomass were blended with gasoline and examined for performance properties and their impact on knock resistance and fine particle emissions in a single cylinder direct-injection spark-ignition engine. The oxygenates included ethanol, isobutanol, anisole, 4-methylanisole, 2-phenylethanol, 2,5-dimethyl furan, and 2,4-xylenol. These were blended into a summertime blendstock for oxygenate blending at levels ranging from 10 to 50 percent by volume. The base gasoline, its blends with p-xylene and p-cymene, and high-octane racing gasoline were tested as controls. Relevant gasoline properties including research octane number (RON), motor octane number, distillation curve, and vapor pressure were measured. Detailed hydrocarbon analysis was used to estimate heat of vaporization and particulate matter index (PMI). Experiments were conducted to measure knock-limited spark advance and particulate matter (PM) emissions.
X