Refine Your Search

Topic

Author

Search Results

Technical Paper

The Volkswagen Electric Drive Vehicle: Objectives and Technology

1998-10-19
98C056
In addition to the price factor, the success of an electric vehicle primarily depends on its performance characteristics and operating range. Advances both in vehicle design and better technology help to improve these characteristics, thus providing the customer with a convincing vehicle concept. Three vehicle generations will be examined and the development advances between 1993 and 2003 will be listed by way of comparison. Improvement potential and technical limits will be analyzed from cost aspects. Since the limits of battery technology cannot be extended at will, it is necessary to develop both battery-driven electric vehicles and vehicles fitted with hybrid drive units. Based on the drive technology of purely electric-powered vehicles, concepts of range extender hybrid and fuel-cell hybrid vehicles will be presented.
Technical Paper

Springback Elimination in Structural Components by Means of Electromagnetic Forming

2009-04-20
2009-01-0803
Looking for car weight reduction related to the use of High Strength Steels (HSS) for manufacturing body-in-white components, an innovative application of the high velocity forming techniques has been developed: the Electro Magnetic (EM) calibration and elimination of the spring-back effect (sidewall curl) of High Strength Steel U-channels. Within this paper the initial tests on L and U-shaped parts will be presented. Being the mechanical stiffness the main parameter for improving the coil endurance, the prediction of the coil strains under EM forces is a basic issue, which has been addressed within this study.
Technical Paper

Benefits of GTL Fuel in Vehicles Equipped with Diesel Particulate Filters

2009-06-15
2009-01-1934
Synthetic fuels are expected to play an important role for future mobility, because they can be introduced seamlessly alongside conventional fuels without the need for new infrastructure. Thus, understanding the interaction of GTL fuels with modern engines, and aftertreatment systems, is important. The current study investigates potential benefits of GTL fuel in respect of diesel particulate filters (DPF). Experiments were conducted on a Euro 4 TDI engine, comparing the DPF response to two different fuels, normal diesel and GTL fuel. The investigation focused on the accumulation and regeneration behavior of the DPF. Results indicated that GTL fuel reduced particulate formation to such an extent that the regeneration cycle was significantly elongated, by ∼70% compared with conventional diesel. Thus, the engine could operate for this increased time before the DPF reached maximum load and regeneration was needed.
Technical Paper

Simulation Based Analysis of Test Results

2010-04-12
2010-01-1013
The use of a newly developed approach results in a highly accurate three dimensional analysis of the occupant movement. The central point of the new method is the calculation of precise body-trajectories by fitting standard sensor-measurements to video analysis data. With the new method the accuracy of the calculated trajectories is better than 5 to 10 millimeters. These body trajectories then form the basis for a new multi-body based numerical method, which allows the three dimensional reconstruction of the dummy kinematics. In addition, forces and moments acting on every single body are determined. In principle, the body movement is reconstructed by prescribing external forces and moments to every single body requiring that it follows the measured trajectory. The newly developed approach provides additional accurate information for the development engineers. For example the motion of dummy body parts not tracked by video analysis can be determined.
Technical Paper

High Temperature Mg Alloys for Sand and Permanent Mold Casting Applications

2004-03-08
2004-01-0656
The need to reduce weight of large and heavy components used by the automotive and aerospace industries such as engine block, cylinder head cover and helicopter gearbox housing has led to the development of new Mg gravity casting alloys that provide adequate properties and cost effective solution. The new Mg gravity casting alloys are designed for high stressed components that operate at a temperature up to 300°C. These new alloys exhibit excellent mechanical properties and creep resistance in T-6 conditions. The present paper aims at introducing three new Mg gravity casting alloys designated MRI 201S, MRI 202S and MRI 203S, which were recently developed by the Magnesium Research Institute of DSM and VW. Apart from the excellent high temperature performance of these alloys, they provide adequate castability and dimension stability along with good weldability and corrosion resistance.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

Validating Prototype Connected Vehicle-to-Infrastructure Safety Applications in Real- World Settings

2018-04-03
2018-01-0025
This paper summarizes the validation of prototype vehicle-to-infrastructure (V2I) safety applications based on Dedicated Short Range Communications (DSRC) in the United States under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). After consideration of a number of V2I safety applications, Red Light Violation Warning (RLVW), Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure Warning (RSZW/LC) were developed, validated and demonstrated using seven different vehicles (six passenger vehicles and one Class 8 truck) leveraging DSRC-based messages from a Road Side Unit (RSU). The developed V2I safety applications were validated for more than 20 distinct scenarios and over 100 test runs using both light- and heavy-duty vehicles over a period of seven months. Subsequently, additional on-road testing of CSW on public roads and RSZW/LC in live work zones were conducted in Southeast Michigan.
Technical Paper

Human Factors Data in Relation to Whiplash Injuries in Rear End Collisions of Passsenger Cars

1998-03-01
981191
Cervical Spine Distortions (CSD) - sometimes called whiplash injuries - have turned out in passenger car accidents to be one of the most important types of injuries to occupants, according to the rate of occurences and to the significance of consequences as well. Many technical aspects of traffic accidents which in the past have led to CSD have been analysed and reported in a large number of publications. However human factors data are not as good represented in the literature. Particularly these parameters and their relationship to whiplash injuries have been analysed on the basis of the Volkswagen Accident Database. The significance of the items gender, age, body height and body weight of belted occupants in passenger cars involved in rear end collisions is presented in quantitative terms regarding frequencies of occurance and risk of suffering CSD respectively.
Technical Paper

A New Method to Assess the Summer Suitability of Car Seats

1993-03-01
930106
A new method has been designed to examine car seats by technical means only, whether they fit summer conditions or not. Test procedures start with the application of a carefully wetted cloth onto the seat to be examined. The test area is then covered by a temperature controlled, electrically heated solid body bloc. This simulates the body temperature and the seat pressure of a real seat user. During test periods of standard three hours, temperature and humidity is measured beneath the test device and in the surrounding air. As an effect of the water impulse the humidity increases under the body bloc. It has been proved that good summer suitability of a car seat is characterised by moderate amount and moderate duration of increased humidity readings. Poor suitability results in higher amount and longer duration of raised humidity. The method is shown to be useful to examine full scale car seats, child safety seats and single design characteristics of car seats as well.
Technical Paper

Influence of Fuel Composition on NMOG-Emissions and Ozone Forming Potential

1993-10-01
932676
VOLKSWAGEN has conducted a number of investigations on a Multi Fuel Vehicle (MFV), designed for variable fuel operation, to determine the influence of fuel composition and clean fuels on exhaust emissions, mainly on ozone forming potential. Results of the tests indicate a small advantage of Phase II Reformulated Gasoline and a greater one for for methanol fuel M85, compared to today's gasoline. For M85 there is an about 25 % lower ozone forming potential. The most critical components in the exhaust of methanol fueled vehicles (M85) are unburned methanol and formaldehyde, forming more than 60 % of the total ozone forming potential. Therefore improvement of cold start and warmup driving during the first two to three minutes is of great importance, because in this time about 90 % of the mentioned components are formed.
Technical Paper

Quantitative In-Cylinder NO LIF Measurements with a KrF Excimer Laser Applied to a Mass-Production SI Engine Fueled with Isooctane and Regular Gasoline

1997-02-24
970824
Quantitative 1-D spatially-resolved NO LIF measurements in the combustion chamber of a mass-production SI engine with port-fuel injection using a tunable KrF excimer laser are presented. One of the main advantages of this approach is that KrF laser radiation at 248 nm is only slightly absorbed by the in-cylinder gases during engine combustion and therefore it allows measurements at all crank angles. Multispecies detection turned out to be crucial for this approach since it is possible to calculate the in-cylinder temperature from the detected Rayleigh scattering and the simultaneously acquired pressure traces. Additionally, it allows the monitoring of interfering emissions and spectroscopic effects like fluorescence trapping which turned out to take place. Excitation with 248 nm yields LIF emissions at shorter wavelengths than the laser wavelength (at 237 and 226 nm).
Technical Paper

Required Measures to Improve the Structural Interaction Potential of Passenger-Cars

2005-04-11
2005-01-1351
Compatibility has been a passive safety research issue for many years. Great advancements in secondary (passive) safety have been achieved in the last decades through focussing on the self-protection level provided by passenger cars. The next step is to consider the other vehicle involved in the collision as well. Compatibility relates to the simultaneous improvement of both self- and partner- protection. Several tests procedures have been proposed around the world to assess the compatibility of passenger cars. None are considered ready to be implemented. This paper shows that controlling vehicle front-end geometry is the most feasible step to improve both self- and partner-protection. Through this, an increase in the structural interaction potential offered by passenger cars would result. To improve structural interaction, a convergence of front-end structures, to within certain vertical limits, is necessary.
Technical Paper

Development of a Rigid Passenger Safety Compartment Made of Composite Material-Application for Front Door Frames

1986-03-01
860278
Based an extensive preparatory work and analyses, suggestions have been drawn up with regard to solutions for front door frames in the following regions:- door hinge mountings, seat belt anchorage mountings of B pillars, cross sections for the top of A pillars. At the same time as the design work, FEM calculations should be carried out to ensure optimization of the concepts. Economy reasons and experiences in production runs point towards a very strong fibre glass-reinforced door frames manufacutred in the SMC procress. The complete door frame is examined in comparison with geometrically similar sheet metal parts on a test frame and in the vehicle.
Technical Paper

The Volkswagen Vanagon Syncro - A Novel 4 WD Concept with the Mew 2.11 Watercooled Engine

1986-10-01
861350
The VOLKSWAGEN VANAGON SYNCRO is presented as a novel 4 WD. The visco coupling is the heart of the forward drive train. Main advantages are automatic performance distribution between the axles and self-locking at extreme revolution differences between front and rear. Another important advantage of the standard 2 WD Vanagon is the well-known excellent spring suspension and damping comfort which is not negatively effected by the 4 WD technique. The vehicle is equipped with a new more powerful engine with 2,1 liter displacement and 70 kW (95 HP) nominal power output which is based on the watercooled horizontally opposed engine program. Electronic fuel injection and ignition are integrated into a unique Volkswagen system called DIGIFANTR. Vehicle performance data and fuel economy figures are given in comparison with 2 WD designs and previously available engine power train combinations.
Technical Paper

Effectiveness of Seat Belts - Analysis of Real World Accidents of Volkswagen Vehicles

1987-07-01
870223
Generally, safety belt effectiveness is spoken of as a single value which is applied to all types of accidents and injuries. This study analyzes the makeup of safety belt effectiveness and compares the overall effectiveness to the effectiveness for different levels of injury, different areas of the body and for different types of accidents at different speeds. These comparisons show the wide range of effectiveness of safety belts and the relative effectiveness for different specific situations.
Technical Paper

Resource Management Processes for Future Vehicle Electronics

2016-04-05
2016-01-0039
New technologies such as multi-core and Ethernet provide vastly improved computing and communications capabilities. This sets the foundation for the implementation of new digital megatrends in almost all areas: driver assistance, vehicle dynamics, electrification, safety, connectivity, autonomous driving. The new challenge: We must share these computing and communication capacities among all vehicle functions and their software. For this step, we need a good resource planning to minimize the probability of late resource bottlenecks (e.g. overload, lack of real-time capability, quality loss). In this article, we summarize the status quo in the field of resource management and provide an outlook on the challenges ahead.
Technical Paper

Research Results and Progress in LeaNOx II -A Co-operation for Lean NOx Abatement

2000-10-16
2000-01-2909
In a consortium of European industrial partners and research institutes, a combination of industrial development and scientific research was organised. The objective was to improve the catalytic NOx conversion for lean burn cars and heavy-duty trucks, taking into account boundary conditions for the fuel consumption. The project lasted for three years. During this period parallel research was conducted in research areas ranging from basic research based on a theoretical approach to full scale emission system development. NOx storage catalysts became a central part of the project. Catalysts were evaluated with respect to resistance towards sulphur poisoning. It was concluded that very low sulphur fuel is a necessity for efficient use of NOx trap technology. Additionally, attempts were made to develop methods for reactivating poisoned catalysts. Methods for short distance mixing were developed for the addition of reducing agent.
Technical Paper

Unregulated Exhaust Gas Components of Modern Diesel Passenger Cars

1999-03-01
1999-01-0514
In this paper the emissions of regulated and unregulated exhaust gas components of a fleet of diesel passenger cars measured at Volkswagen in the eighties are compared with the results of a new investigation on modern direct-injection diesel vehicles. The potential of improved diesel fuels to reduce emissions is also examined. The emissions of regulated exhaust gas components as well as fuel consumption have been reduced significantly in the last years as a result of the systematic further development of conventional swirl chamber engines and exhaust gas after-treatment as well as the introduction of SDI/TDI engines. As was to be expected, this has also had a positive effect on the emissions of unregulated exhaust gas components. It has been possible, for example, to reduce the polycyclic aromatic hydrocarbons adsorbed on diesel particulates by more than 95%.
Technical Paper

Experimental Investigation of Droplet Formation and Droplet Sizes Behind a Side Mirror

2022-12-27
2022-01-5107
The investigation of vehicle soiling by improvement of vehicle parts to optimize the surrounding airflow is of great importance not only because of the visibility through windows and at mirrors but also the functionality of different types of sensors (camera, lidar, radars, etc.) for the driver assistance systems and especially for autonomous driving vehicles has to be guaranteed. These investigations and corresponding developments ideally take place in the early vehicle development process since later changes are difficult to apply in the vehicle production process for many reasons. Vehicle soiling is divided into foreign soiling and self-soiling with respect to the source of the soiling water, e.g., direct rain impact, swirled (dirty) water of other road users and own rotating wheels. The investigations of the soiling behavior of vehicles were performed experimentally in a wind tunnel and street tests.
Technical Paper

Worldwide Electrical Energy Consumption of Various HVAC Systems in BEVs and Their Thermal Management and Assessment

2018-04-03
2018-01-1190
Battery electric vehicles (BEVs) are equipped with Mobile Air Conditioning systems (MACs) to ensure a comfortable cabin temperature in all climates and ambient conditions as well as the optional conditioning of the traction battery. An assessment of the global electrical energy consumption of various MACs has been derived, where the basis of the assessment procedure is the climate data GREEN-MAC-LCCP 2007 (Global Refrigerants Energy & Environmental - Mobile Air Condition - Life Cycle Climate Performance) and the improved LCCP2013 (Life Cycle Climate Performance. The percentage driving time during 6 AM and 24 PM is divided into six different temperature bins with the solar radiation and relative humidity for 211 cities distributed over Europe, North, Central, and South America, Asia, South West Pacific, and Africa. The energy consumption of the MACs is determined by a thermal vehicle simulation. In this work, four different MACs are simulated and compared.
X