Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Model Based E85 Cold Start Optimization for DISI Engines

2009-06-15
2009-01-1909
The startability of SI engines, especially of DISI engines, is the greatest challenge when using ethanol blended fuels. The development of a suitable injection strategy is therefore the main engineering target when developing an ethanol engine with direct injection. In order to limit the test efforts of such a program, a vaporization model has been created that provides the quantity of vaporized fuel depending on pressure and on start and end, respectively number and split relation of injections. This model takes account of the most relevant fuel properties such as density, surface tension and viscosity. It also considers the interaction of the spray with cylinder liner, cylinder head and piston. A comparison with test results shows the current status and the need for action of this simulation model.
Journal Article

Emission and Ignition Effects of Alternative Fuels at Conventional and Premixed Diesel Combustion

2010-04-12
2010-01-0870
The growing availability of different biofuels and synthetic fuels is leading to increased diversity of automotive fuels. Understanding how fuel properties affect combustion and how engine calibration strategies can compensate for variations in fuel composition is crucial for ensuring proper engine operation in this world of increased fuel diversity. This study looks at the ability to compensate for wide changes in cetane quality. Four different fuels with variations in cetane number, volatility and composition have been tested in a single cylinder engine and compared to diesel fuel. The selected operating conditions represent the entire engine map of a passenger car diesel engine. In part load the effects were investigated for conventional and premixed Diesel combustion. The results show that part load operation is especially relevant for the detection and compensation of varying fuel properties and that, depending on engine load, different control strategies have to be applied.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Journal Article

Achieving Very Low PN Emissions with an Advanced Multi-Hole Injector Functionality and Adapted Spray Targeting Under High Fuel Pressure Conditions

2014-10-13
2014-01-2605
In the near future, emissions legislation will become more and more restrictive for direct injection SI engines by adopting a stringent limitation of particulate number emissions in late 2017. In order to cope with the combustion system related challenges coming along with the introduction of this new standard, Hitachi Automotive Systems Ltd., Hitachi Europe GmbH and IAV GmbH work collaboratively on demonstrating technology that allows to satisfy EU6c emissions limitations by application of Hitachi components dedicated to high pressure injection (1). This paper sets out to describe both the capabilities of a new high pressure fuel system improving droplet atomization and consequently mixture homogeneity as well as the process of utilizing the technology during the development of a demonstrator vehicle called DemoCar. The Hitachi system consists of a fuel pump and injectors operating under a fuel pressure of 30 MPa.
Journal Article

Optical Investigations of the Ignition-Relevant Spray Characteristics from a Piezo-Injector for Spray-Guided Spark-Ignited Engines

2015-01-01
2014-01-9053
The spray-guided combustion process offers a high potential for fuel savings in gasoline engines in the part load range. In this connection, the injector and spark plug are arranged in close proximity to one another, as a result of which mixture formation is primarily shaped by the dynamics of the fuel spray. The mixture formation time is very short, so that at the time of ignition the velocity of flow is high and the fuel is still largely present in liquid form. The quality of mixture formation thus constitutes a key aspect of reliable ignition. In this article, the spray characteristics of an outward-opening piezo injector are examined using optical testing methods under pressure chamber conditions and the results obtained are correlated with ignition behaviour in-engine. The global spray formation is examined using high-speed visualisation methods, particularly with regard to cyclical fluctuations.
Journal Article

Analysis of Cycle-to-Cycle Variations of the Mixing Process in a Direct Injection Spark Ignition Engine Using Scale-Resolving Simulations

2016-11-16
2016-01-9048
Since the mechanisms leading to cyclic combustion variabilities in direct injection gasoline engines are still poorly understood, advanced computational studies are necessary to be able to predict, analyze and optimize the complete engine process from aerodynamics to mixing, ignition, combustion and heat transfer. In this work the Scale-Adaptive Simulation (SAS) turbulence model is used in combination with a parameterized lagrangian spray model for the purpose of predicting transient in-cylinder cold flow, injection and mixture formation in a gasoline engine. An existing CFD model based on FLUENT v15.0 [1] has been extended with a spray description using the FLUENT Discrete Phase Model (DPM). This article will first discuss the validation of the in-cylinder cold flow model using experimental data measured within an optically accessible engine by High Speed Particle Image Velocimetry (HS-PIV).
Journal Article

Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability

2016-04-05
2016-01-0885
Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the veracity of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

Hybrid Phenomenological and Mathematical-Based Modeling Approach for Diesel Emission Prediction

2020-04-14
2020-01-0660
In order to reduce the negative health effects associated with engine pollutants, environmental problems caused by combustion engine emissions and satisfy the current strict emission standards, it is essential to better understand and simulate the emission formation process. Further development of emission model, improves the accuracy of the model-based optimization approach, which is used as a decisive tool for combustion system development and engine-out emission reduction. The numerical approaches for emission simulation are closely coupled to the combustion model. Using a detailed emission model, considering the 3D mixture preparation simulation including, chemical reactions, demands high computational effort. Phenomenological combustion models, used in 1D approaches for model-based system optimization can deliver heat release rate, while using a two-zone approach can estimate the NOx emissions.
Technical Paper

A Phenomenological Homogenization Model Considering Direct Fuel Injection and EGR for SI Engines

2020-04-14
2020-01-0576
As a consequence of reduced fuel consumption, direct injection gasoline engines have already prevailed against port fuel injection. However, in-cylinder fuel homogenization strongly depends on charge motion and injection strategies and can be challenging due to the reduced available time for mixture formation. An insufficient homogenization has generally a negative impact on the combustion and therefore also on efficiency and emissions. In order to reach the targets of the intensified CO2 emission reduction, further increase in efficiency of SI engines is essential. In this connection, 0D/1D simulation is a fundamental tool due to its application area in an early stage of development and its relatively low computational costs. Certainly, inhomogeneities are still not considered in quasi dimensional combustion models because the prediction of mixture formation is not included in the state of the art 0D/1D simulation.
Journal Article

Management of Energy Flow in Complex Commercial Vehicle Powertrains

2012-04-16
2012-01-0724
After the realization of very low exhaust gas emissions and corresponding OBD requirements to fulfill Euro VI and Tier 4 legislation, the focus in heavy-duty powertrain development is on the reduction of fuel consumption and thus CO₂ emissions again. Besides this, the total vehicle operation costs play another major role. A holistic view of the overall powertrain system including the combustion process, exhaust gas aftertreatment, energy recuperation and energy storage is necessary in order to obtain the best possible system for a given application. A management system coordinating the energy flow between the different subsystems while guaranteeing low exhaust emissions plays a major part in operating such complex architectures under optimal conditions.
Journal Article

Zero-Dimensional Modeling of Combustion and Heat Release Rate in DI Diesel Engines

2012-04-16
2012-01-1065
Zero-dimensional heat release rate models have the advantage of being both easy to handle and computationally efficient. In addition, they are capable of predicting the effects of important engine parameters on the combustion process. In this study, a zero-dimensional combustion model based on physical and chemical sub-models for local processes like injection, spray formation, ignition and combustion is presented. In terms of injection simulation, the presented model accounts for a phenomenological nozzle flow model considering the nozzle passage inlet configuration and an approach for modeling the characteristics of the Diesel spray and consequently the mixing process. A formulation for modeling the effects of intake swirl flow pattern, squish flow and injection characteristics on the in-cylinder turbulent kinetic energy is presented and compared with the CFD simulation results.
Journal Article

Physico-Chemical Modeling of an Integrated SCR on DPF (SCR/DPF) System

2012-04-16
2012-01-1083
A physico-chemical model of a Cu-zeolite SCR/DPF-system involving NH₃ storage and SCR reactions as well as soot oxidation reactions with NO₂ has been developed and validated based on fundamental experimental investigations on synthetic gas test bench. The goal of the work was the quantitative modeling of NOx and NH₃ tailpipe emissions in transient test cycles in order to use the model for concept design analysis and the development of control strategies. Another focus was put on the impact of soot on SCR/DPF systems. In temperature-programmed desorption experiments, soot-loaded SCR/DPF filters showed a higher NH₃ storage capacity compared to soot-free samples. The measured effect was small, but could affect the NH₃ slip in vehicle applications. A bimodal desorption characteristic was measured for different adsorption temperatures and heating rates.
Technical Paper

Prediction of CO Emissions from a Gasoline Direct Injection Engine Using CHEMKIN®

2006-10-16
2006-01-3240
Modern engines are intended to work at high efficiency and at the same time have low emissions. Since modern engines operate with nearly stoichiometric air/fuel mixtures to reduce nitrogen oxides, one of the most critical emissions is carbon monoxide and its prediction is therefore essential for today's engine design. The concept of the presented model is to combine the two-zone thermodynamic model and CHEMKIN software to predict the carbon monoxide emissions from a gasoline direct injection engine with good computational efficiency and low calculation time. The model calculation was divided into two parts. The first part is the two-zone model which can also predict the CO concentration for the exhaust condition by using the chemical equilibrium concentration. The second part is the kinetic model, which uses input data from the two-zone model and starts the calculation shortly before the end of combustion.
Technical Paper

Homogeneous Diesel Combustion with External Mixture Formation by a Cool Flame Vaporizer

2006-10-16
2006-01-3323
The homogeneous Diesel combustion is a way to effect a soot and nitrogen oxide (NOx) free Diesel engine operation. Using direct injection of Diesel fuel, the mixture typically ignites before it is fully homogenized. In this study a homogeneous mixture is prepared outside of the combustion chamber by a Cool Flame Vaporizer. At first the specification of the vaporizer is given in this paper. To determine the composition of the vaporizer gas an analysis using gas chromatography/mass spectroscopy (GC/MS) was made. The results give an idea of the effects on engine combustion. Followed by, the vaporizer was adapted to a single-cylinder Diesel engine. To adapt the engine's configuration regarding compression ratio and inlet temperature range a zero dimensional engine process simulation software was utilized. The engine was run in different operating modes.
Technical Paper

Gane Fuel - Introduction of an Innovative, Carbon-Neutral and Low Emission Fuel for HD CI Engines

2021-09-21
2021-01-1198
The newest legislative trends enforce a significant decrease in CO2 emissions for commercial vehicles. For instance, in Europe a drop in fleet consumption of 15% and 30% is set as target by the regulation by 2025 and 2030. The use of carbon-neutral fuels offers possibilities regarding net-zero CO2 emissions - although not yet considered by the rules. Another challenging aspect is the drastic tightening of NOx emissions limits for future legislations, which is approved or being discussed both for the United States and for the EU. The current work describes the potentials of an innovative fuel, marketed as Gane fuel regarding performance, efficiency and emission behavior. First, the properties of the developed fuel are described: Gane is made from methanol blended with water and is tailored for diffusive combustion. The fuel blending is so defined to fulfill the combustion requirements.
Journal Article

In-Cylinder LIF Imaging, IR-Absorption Point Measurements, and a CFD Simulation to Evaluate Mixture Formation in a CNG-Fueled Engine

2018-04-03
2018-01-0633
Two optical techniques were developed and combined with a CFD simulation to obtain spatio-temporally resolved information on air/fuel mixing in the cylinder of a methane-fueled, fired, optically accessible engine. Laser-induced fluorescence (LIF) of anisole (methoxybenzene), vaporized in trace amounts into the gaseous fuel upstream of the injector, was captured by a two-camera system, providing one instantaneous image of the air/fuel ratio per cycle. Broadband infrared (IR) absorption by the methane fuel itself was measured in a small probe volume via a spark-plug integrated sensor, yielding time-resolved quasi-point information at kHz-rates. The simulation was based on the Reynolds-averaged Navier-Stokes (RANS) approach with the two-equation k-epsilon turbulence model in a finite volume discretization scheme and included the port-fuel injection event. Commercial CFD software was used to perform engine simulations close to the experimental conditions.
Journal Article

Influence of Innovative Diesel-Ethanol Blend on Combustion, Emission and Fuel-Carrying Components

2013-10-14
2013-01-2696
The strong demand for diesel fuel is producing a surplus of gasoline fractions in Europe. Despite new vehicles using less energy, the rising volume of traffic will lead to more diesel being consumed. European legislation demands that renewable fuels cover 10% of energy consumed in the transport sector. The present strategy of dividing biofuels in equal shares between diesel and gasoline does not help to improve this situation. It seems reasonable not only to add FAME but also ethanol to diesel. Unfortunately, fuel blends containing ethanol cannot be used in existing cars without hardware modifications. This is because of ethanol's characteristics and well-known from the experience gathered with gasoline cars. As such, the first part of this study investigates material compatibility, focusing on corrosion and changes to the mechanical properties of the materials used in diesel engines.
Technical Paper

Catalytic NOx Reduction in Net Oxidizing Exhaust Gas

1990-02-01
900496
Several different possibilities will be described and discussed on the processes of reducing NOx in lean-burn gasoline and diesel engines. In-company studies were conducted on zeolitic catalysts. With lean-burn spark-ignition engines, hydrocarbons in the exhaust gas act as a reducing agent. In stationary conditions at λ = 1.2, NOx conversion rates of approx. 45 % were achieved. With diesel engines, the only promising variant is SCR technology using urea as a reducing agent. The remaining problems are still the low space velocity and the narrow temperature window of the catalyst. The production of reaction products and secondary reactions of urea with other components in the diesel exhaust gas are still unclarified.
Technical Paper

Optimum Diesel Fuel for Future Clean Diesel Engines

2007-01-23
2007-01-0035
Over the next decades to come, fossil fuel powered Internal Combustion Engines (ICE) will still constitute the major powertrains for land transport. Therefore, their impact on the global and local pollution and on the use of natural resources should be minimized. To this end, an extensive fundamental and practical study was performed to evaluate the potential benefits of simultaneously co-optimizing the system fuel-and-engine using diesel as an example. It will be clearly shown that the still unused co-optimizing of the system fuel-and-engine (including advanced exhaust after-treatment) as a single entity is a must for enabling cleaner future road transport by cleaner fuels since there are large, still unexploited potentials for improvements in road fuels which will provide major reductions in pollutant emissions both in vehicles already in the field and even more so in future dedicated vehicles.
X