Refine Your Search

Topic

Author

Search Results

Technical Paper

Characterization of Cycle-by-Cycle Variations of an Optically Accessible Heavy-Duty Diesel Engine Retrofitted to Natural Gas Spark Ignition

2021-09-05
2021-24-0045
The combustion process in spark-ignition engines can vary considerably cycle by cycle, which may result in unstable engine operation. The phenomena amplify in natural gas (NG) spark-ignition (SI) engines due to the lower NG laminar flame speed compared to gasoline, and more so under lean burn conditions. The main goal of this study was to investigate the main sources and the characteristics of the cycle-by-cycle variation in heavy-duty compression ignition (CI) engines converted to NG SI operation. The experiments were conducted in a single-cylinder optically-accessible CI engine with a flat bowl-in piston that was converted to NG SI. The engine was operated at medium load under lean operating conditions, using pure methane as a natural gas surrogate. The CI to SI conversion was made through the addition of a low-pressure NG injector in the intake manifold and of a NG spark plug in place of the diesel injector.
Technical Paper

Energy Release Characteristics inside a Spark-Ignition Engine with a Bowl-in-Piston Geometry

2020-01-16
2020-01-5003
The conversion of compression ignition (CI) internal combustion engines to spark-ignition (SI) operation by adding a spark plug to ignite the mixture and fumigating the fuel inside the intake manifold can increase the use of alternative gaseous fuels (e.g., natural gas) in heavy-duty applications. This study proposed a novel, less-complex methodology based on the inflection points in the apparent rate of heat release (ROHR) that can identify and separate the fast-burning stage inside the piston bowl from the slower combustion stage inside the squish region (a characteristic of premixed combustion inside a diesel geometry). A single-cylinder 2L CI research engine converted to natural gas SI operation provided the experimental data needed to evaluate the methodology, at several spark timings, equivalence ratios, and engine speeds.
Journal Article

On-Road NOx Emission Rates from 1994-2003 Heavy-Duty Diesel Trucks

2008-04-14
2008-01-1299
In-service 1994-2003 heavy-duty trucks were acquired by West Virginia University (WVU), equipped with the WVU Mobile Emissions Measurement System (MEMS) to measure on-road NOx, and driven on road routes near Sabraton, West Virginia, and extending up to Washington, PA to obtain real-world oxides of nitrogen (NOx) emissions data on highways and local roads. The MEMS measured 5Hz NOx, and load was obtained from the electronic control unit. Trucks were loaded to about 95% of their gross vehicle weights. Emissions in g/mi and g/bhp-hr were computed over the various road routes. In addition, some of the trucks were tested 1 to 2 years later to determine emission changes that may have occurred for these trucks. Emission results varied significantly over the different road routes due to different speeds, driving patterns, and road grades.
Journal Article

A Work-Based Window Method for Calculating In-Use Brake-Specific NOx Emissions of Heavy-Duty Diesel Engines

2008-04-14
2008-01-1301
A work-based window method has been developed to calculate in-use brake-specific oxides of nitrogen (NOx) emissions for all engine speeds and engine loads. During an in-use test, engine speed and engine torque are read from the engine's electronic control unit, and along with time, are used to determine instantaneous engine power. Instantaneous work is calculated using this power and the time differential in the data collection. Work is then summed until the target amount of work is accumulated. The emissions levels are then calculated for that window of work. It was determined that a work window equal to the theoretical Federal Test Procedure (FTP) cycle work best provides a means of comparison to the FTP certification standard. Also, a failure criterion has been established based on the average amount of power generated in the work window and the amount of time required to achieve the target work window to determine if a particular work window is valid.
Journal Article

Preliminary Systems Evaluation for a Guidable Extended Range Tube Launched-UAV

2011-10-18
2011-01-2559
Tube Launched-Unmanned Air Vehicles (TL-UAV) are munitions that alter their trajectories during flight to enhance the capabilities by possibly extending range, increasing loiter time through gliding, and/or having guided targeting capabilities. Traditional munition systems, specifically the tube-launched mortar rounds, are not guided. Performance of these "dumb" munitions could be enhanced by updating to TL-UAV and still utilize existing launch platforms with standard propellant detonation firing methods. The ability to actively control the flight path and extend range of a TL-UAV requires multiple onboard systems which need to be identified, integrated, assembled, and tested to meet cooperative function requirements. The main systems, for a mortar-based TL-UAV being developed at West Virginia University (WVU), are considered to be a central hub to process information, aerodynamic control devices, flight sensors, a video camera system, power management, and a wireless transceiver.
Technical Paper

Laser Spark Plug Development

2007-04-16
2007-01-1600
To meet the ignition system needs of large bore high pressure lean burn natural gas engines a laser diode side pumped passively Q-switched laser igniter was designed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn high brake mean effective pressure (BMEP) engine. The experimentation explored a variety of optical and electrical input parameters that when combined produced a robust spark in air. The results show peak power levels exceeding 2 MW and peak focal intensities above 400 GW/cm2. Future research avenues and current progress with the initial prototype are presented and discussed.
Technical Paper

Numerical Prediction of Knock in a Bi-Fuel Engine

1998-10-19
982533
Dedicated natural gas engines suffer the disadvantages of limited vehicle range and relatively few refueling stations. A vehicle capable of operating on either gasoline or natural gas allows alternative fuel usage without sacrificing vehicle range and mobility. However, the bi-fuel engine must be made to provide equal performance on both fuels. Although bi-fuel conversions have existed for a number of years, historically natural gas performance is degraded relative to gasoline due to reduced volumetric efficiency and lower power density of CNG. Much of the performance losses associated with CNG can be overcome by increasing the compression ratio. However, in a bi-fuel application, high compression ratios can result in severe engine knock during gasoline operation. Variable intake valve timing, increased exhaust gas recirculation and retarded ignition timing were explored as a means of controlling knock during gasoline operation of a bi-fuel engine.
Technical Paper

Modularity in Spark Ignition Engines: A Review of its Benefits, Implementation and Limitations

1998-10-19
982688
A conceptual understanding of modularity in internal combustion engines (defined as design, operation, and sensing on an individual cylinder basis) is presented. Three fundamental modular concepts are identified. These are dissimilar component sizing and operation, component deactivation, and direct sensing. The implementation of these concepts in spark ignition internal combustion engines is presented. Several modular approaches are reviewed with respect to breathing, fueling, power generation, and sensing. These include dissimilar orientation, geometry, and activation of multiple induction runners, partial or total disablement of valves through direct or indirect means, dissimilar fueling of individual cylinders, skipping the combustion event of one or more cylinders, deactivation of dissimilar individual cylinders or a group of cylinders, and individual cylinder gas pressure and mixture strength sensing.
Technical Paper

Emissions of NOx, NH3 and Fuel Consumption Using High and Low Engine-Out NOx Calibrations to Meet 2010 Heavy Duty Diesel Engine Emission Standards

2009-04-20
2009-01-0909
For engine operations involving low load conditions for an extended amount of time, the exhaust temperature may be lower than that necessary to initiate the urea hydrolyzation. This would necessitate that the controller interrupt the urea supply to prevent catalyst fouling by products of ammonia decomposition. Therefore, it is necessary for the engine controller to have multiple calibrations available in regions of engine operation where the aftertreatment does not perform well, so that optimal exhaust conditions are guaranteed during the wide variety of engine operations. In this study the test engine was equipped with a catalyzed diesel particulate filter (DPF) and a selective catalytic reduction system (SCR), and programmed with two different engine calibrations, namely the low-NOx and the low fuel consumption (low-FC).
Technical Paper

Application of Two Fuel Cells in Hybrid Electric Vehicles

2008-10-06
2008-01-2418
Fuel economy is an important issue in urban driving cycle where vehicles are required to operate most of the time at lower power than the average demand. High power fuel cells operate economically at higher loads. Hence, conventional combination of a high power fuel cell and an additional storage device such as ultracapacitor or battery units does not necessarily provide an economic configuration. This paper offers a new configuration that consists of two fuel cells combined with a battery unit to provide a fuel efficient source of power for hybrid electric fuel cell vehicles in urban driving applications. The control algorithm and power management strategy for a combination of two downsized fuel cells and a storage device is provided and its performance of operation is compared with traditional topologies.
Technical Paper

Nano Particulate Matter Evolution in a CFR1065 Dilution Tunnel

2009-11-02
2009-01-2672
Dual primary full-flow dilution tunnels represent an integral part of a heavy-duty transportable emissions measurement laboratory designed and constructed to comply with US Code of Federal Regulations (CFR) 40 Part 1065 requirements. Few data exist to characterize the evolution of particulate matter (PM) in full scale dilution tunnels, particularly at very low PM mass levels. Size distributions of ultra-fine particles in diesel exhaust from a naturally aspirated, 2.4 liter, 40 kW ISUZU C240 diesel engine equipped with a diesel particulate filter (DPF) were studied in one set of standard primary and secondary dilution tunnels with varied dilution ratios. Particle size distribution data, during steady-state engine operation, were collected using a Cambustion DMS500 Fast Particulate Spectrometer. Measurements were made at four positions that spanned the tunnel cross section after the mixing orifice plate for the primary dilution tunnel and at the outlet of the secondary dilution tunnel.
Technical Paper

Chassis Dynamometer Emission Measurements from Refuse Trucks Using Dual-Fuel™ Natural Gas Engines

2003-11-10
2003-01-3366
Emissions from 10 refuse trucks equipped with Caterpillar C-10 engines were measured on West Virginia University's (WVU) Transportable Emissions Laboratory in Riverside, California. The engines all used a commercially available Dual-Fuel™ natural gas (DFNG) system supplied by Clean Air Partners Inc. (CAP), and some were also equipped with catalyzed particulate filters (CPFs), also from CAP. The DFNG system introduces natural gas with the intake air and then ignites the gas with a small injection of diesel fuel directly into the cylinder to initiate combustion. Emissions were measured over a modified version of a test cycle (the William H. Martin cycle) previously developed by WVU. The cycle attempts to duplicate a typical curbside refuse collection truck and includes three modes: highway-to-landfill delivery, curbside collection, and compaction. Emissions were compared to similar trucks that used Caterpillar C-10 diesels equipped with Engelhard's DPX catalyzed particulate filters.
Technical Paper

Laser-Spark Ignition Testing in a Natural Gas-Fueled Single-Cylinder Engine

2004-03-08
2004-01-0980
As the demand for higher engine efficiencies and lower emissions drive stationary, spark-ignited reciprocating engine combustion to leaner air/fuel operating conditions and higher in-cylinder pressures, increased spark energy is required for maintain stable combustion and low emissions. Unfortunately, increased spark energy negatively impacts spark plug durability and its effectiveness in transmitting adequate energy as an ignition source. Laser ignition offers the potential to improve ignition system durability, reduce maintenance, as well as to improve engine combustion performance. This paper discusses recent engine combustion testing with an open beam path laser ignition system in a single-cylinder engine fueled by natural gas. In particular, engine knock and misfire maps are developed for both conventional spark plug and laser spark ignition. The misfire limit is shown to be significantly extended for laser ignition while the knock limit remains virtually unaffected.
Technical Paper

The Development of a Fourth Generation Hybrid Electric Vehicle at West Virginia University

2001-03-05
2001-01-0682
As a part of the FutureTruck 2000 advanced technology student vehicle competition sponsored by the US Department of Energy and General Motors, West Virginia University has converted a full-size sport utility vehicle into a high fuel efficiency, low emissions vehicle. The environmental impact of the Chevrolet Suburban SUV, in terms of both greenhouse gas emissions and exhaust emissions, was reduced through hybridization without losing any of the functionality and utility of the base vehicle. The approach taken was one of using a high efficiency, state-of-the-art direct injection, turbocharged diesel engine coupled to a high output electric traction motor for power assist and to recover regenerative braking energy. The vehicle employs a state-of-the-art combination lean NOx catalyst, oxidation catalyst and particulate filter to ensure low exhaust emissions.
Technical Paper

The Coaxial Cavity Resonator as a RF IC Engine Ignition Source

2001-03-05
2001-01-0987
The Quarter Wave Coaxial Cavity Resonator (QWCCR) plasma igniter is designed, from previous theoretical work, as an ignition source for an internal combustion engine. The present research has explored the implementation of the QWCCR into an internal combustion (IC) engine. The QWCCR design parameters of inner conductor length, loop geometry, and loop position were varied for two igniters of differing operating frequency. Variations of the QWCCR radio frequency (RF) parameters, as a function of engine geometry, were studied by placing the igniter in a combustion chamber and manually varying the crank position. Three identical igniters were fitted with dielectric inserts and the parameters were studied before and after ignition was sustained in a twin-cylinder engine. Optimal resonator geometries were determined. Radio frequency parameter invariance was found with respect to crank angle and piston distance. The first successful IC engine ignition using a QWCCR was achieved.
Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

Celebrating the Exclaim!

2003-03-03
2003-01-1260
West Virginia University redesigned a 2002 Ford Explorer and created a diesel electric hybrid vehicle to satisfy the goals of the 2002 FutureTruck competition. These goals were to demonstrate a 25% improvement in fuel economy, to reduce greenhouse gas emissions, to achieve California ULEV emissions, to demonstrate 1/8-mile acceleration of 11.5 seconds or less, and to maintain vehicular comforts and performance. West Virginia University's 2002 hybrid sport utility vehicle (SUV), the Exclaim!, meets or exceeds these goals. Using a post-transmission parallel configuration, WVU integrated a 2.5L Detroit Diesel Corporation engine along with a Unique Mobility 75kW electric motor to replace the stock drivetrain. With an emphasis on maintaining performance, WVU strived to improve areas where SUVs have traditionally performed poorly: fuel economy and emissions. Using regenerative braking, fuel economy has been significantly improved.
Technical Paper

Study on the Use of Springs in a Dual Free Piston Engine Alternator

2016-10-17
2016-01-2233
The free piston engine combined with a linear electric alternator has the potential to be a highly efficient converter from fossil fuel energy to electrical power. With only a single major moving part (the translating rod), mechanical friction is reduced compared to conventional crankshaft technology. Instead of crankshaft linkages, the motion of the translator is driven by the force balance between the engine cylinder, alternator, damping losses, and springs. Focusing primarily on mechanical springs, this paper explores the use of springs to increase engine speed and reduce cyclic variability. A numeric model has been constructed in MATLAB®/Simulink to represent the various subsystems, including the engine, alternator, and springs. Within the simulation is a controller that forces the engine to operate at a constant compression ratio by affecting the alternator load.
Technical Paper

Experimental Investigation into the Degradation of Borosilicate Glass Used in Dielectric Barrier Discharge Devices

2017-09-19
2017-01-2060
The dielectric barrier discharge (DBD) has seen significantly increased levels of interest for its applications to various aerodynamic problems. The DBD produces stable atmospheric-pressure non-thermal plasma with highly energetic electrons and a variety of ions and neutral species. The resulting plasma often degrades the dielectric barrier between the electrodes of the device, ultimately leading to actuator failure. Several researchers have studied a variety of parameters related to degradation and time-dependent dielectric breakdown of various polymers such as PMMA or PVC that are often used in actuator construction. Many of these studies compare the degradation of these materials to that of borosilicate glass in which it is claimed that there is no observable degradation to the glass. Recent research at West Virginia University has shown that certain actuator operating conditions can lead to degradation of a glass barrier and can ultimately result in failure.
Technical Paper

Experimental Study of Dielectric Barrier Discharge Driven Duct Flow for Propulsion Applications in Unmanned Aerial Systems

2017-09-19
2017-01-2063
The dielectric barrier discharge (DBD) has been studied significantly in the past two decades for its applications to various aerodynamic problems. The most common aerodynamic applications have been stall/separation control and boundary layer modification. Recently several researchers have proposed utilizing the DBD in various configurations to act as viable propulsion systems for micro and nano aerial vehicles. The DBD produces stable atmospheric-pressure non-thermal plasma in a thin sheet with a preferred direction of flow. The plasma flow, driven by electrohydrodynamic body forces, entrains the quiescent air around it and thus develops into a low speed jet on the order of 10-1 to 101 m/s. Several researchers have utilized DBDs in an annular geometric setup as a propulsion device. Other researchers have used them to alter rectangular duct flows and directional jet devices. This study investigates 2-D duct flows for applications in micro plasma thrusters.
X