Refine Your Search

Topic

Search Results

Journal Article

The Effect of Intake Temperature in a Turbocharged Multi Cylinder Engine operating in HCCI mode

2009-09-13
2009-24-0060
The operating range in HCCI mode is limited by the excessive pressure rise rate and therefore high combustion induced noise. The HCCI range can be extended with turbocharging which enables increased dilution of the charge and thus a reduction of combustion noise. When the engine is turbocharged the intake charge will have a high temperature at increased boost pressure and can then be regulated in a cooling circuit. Limitations and benefits are examed at 2250 rpm and 400 kPa indicated mean effective pressure. It is shown that combustion stability, combustion noise and engine efficiency have to be balanced since they have optimums at different intake temperatures and combustion timings. The span for combustion timings with high combustion stability is narrower at some intake temperatures and the usage of external EGR can improve the combustion stability. It is found that the standard deviation of combustion timing is a useful tool for evaluating cycle to cycle variations.
Journal Article

How Hythane with 25% Hydrogen can Affect the Combustion in a 6-Cylinder Natural-gas Engine

2010-05-05
2010-01-1466
Using alternative fuels like Natural Gas (NG) has shown good potentials on heavy duty engines. Heavy duty NG engines can be operated either lean or stoichiometric diluted with EGR. Extending Dilution limit has been identified as a beneficial strategy for increasing efficiency and decreasing emissions. However dilution limit is limited in these types of engines because of the lower burnings rate of NG. One way to extend the dilution limit of a NG engine is to run the engine on Hythane (natural gas + some percentage hydrogen). Previously effects of Hythane with 10% hydrogen by volume in a stoichiometric heavy duty NG engine were studied and no significant changes in terms of efficiency and emissions were observed. This paper presents results from measurements made on a heavy duty 6-cylinder NG engine. The engine is operated with NG and Hythane with 25% hydrogen by volume and the effects of these fuels on the engine performance are studied.
Journal Article

Evaluation of Different Turbocharger Configurations for a Heavy-Duty Partially Premixed Combustion Engine

2017-09-04
2017-24-0164
The engine concept partially premixed combustion (PPC) has proved higher gross indicated efficiency compared to conventional diesel combustion engines. The relatively simple implementation of the concept is an advantage, however, high gas exchange losses has made its use challenging in multi-cylinder heavy duty engines. With high rates of exhaust gas recirculation (EGR) to dilute the charge and hence limit the combustion rate, the resulting exhaust temperatures are low. The selected boost system must therefore be efficient which could lead to large, complex and costly solutions. In the presented work experiments and modelling were combined to evaluate different turbocharger configurations for the PPC concept. Experiments were performed on a multi-cylinder engine. The engine was modified to incorporate long route EGR and a single-stage turbocharger, however, with compressed air from the building being optionally supplied to the compressor.
Journal Article

Ethanol-Diesel Fumigation in a Multi-Cylinder Engine

2008-04-14
2008-01-0033
Fumigation was studied in a 12 L six-cylinder heavy-duty engine. Port-injected ethanol was ignited with a small amount of diesel injected into the cylinder. The setup left much freedom for influencing the combustion process, and the aim of this study was to find operation modes that result in a combustion resembling that of a homogeneous charge compression ignition (HCCI) engine with high efficiency and low NOx emissions. Igniting the ethanol-air mixture using direct-injected diesel has attractive properties compared to traditional HCCI operation where the ethanol is ignited by pressure alone. No preheating of the mixture is required, and the amount of diesel injected can be used to control the heat release rate. The two fuel injection systems provide a larger flexibility in extending the HCCI operating range to low and high loads. It was shown that cylinder-to-cylinder variations present a challenge for this type of combustion.
Journal Article

Investigation of the Combustion Characteristics with Focus on Partially Premixed Combustion in a Heavy Duty Engine

2008-06-23
2008-01-1658
Partially Premixed Combustion (PPC) has shown its potential by combining high combustion controllability with emission characteristics that are close to those of an HCCI engine. In order to get PPC the ignition delay needs to be long enough for the fuel and air to mix prior to combustion. This can be achieved by injecting the fuel sufficiently early while running with high EGR. In order to find out where and how PPC occurs a map that shows the changes in combustion characteristics with injection timing and EGR was created. The combustion characteristics were studied in a six cylinder heavy duty engine where the Start of Injection (SOI) was swept from early to late injection over a wide range of EGR levels. The emissions were monitored during the sweeps and in the most promising regions, with low emissions and high efficiency, additional changes in injection pressure and engine speed were applied to get a more versatile picture of the combustion.
Journal Article

Closed-Loop Combustion Control for a 6-Cylinder Port-Injected Natural-gas Engine

2008-06-23
2008-01-1722
High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark ignition engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. Obtaining reliable spark ignition is difficult however with high pressure and dilution. There will be a limit to the amount of EGR that can be tolerated for each operating point. Open loop operation based on steady state maps is difficult since there is substantial dynamics both from the turbocharger and from the wall heat interaction. The proposed approach applies standard closed loop lambda control for controlling the overall air/fuel ratio for a heavy duty 6-cylinder port injected natural gas engine. A closed loop load control is also applied for keeping the load at a constant level when using EGR.
Journal Article

Investigation of Performance and Emission Characteristics of a Heavy Duty Natural Gas Engine Operated with Pre-Chamber Spark Plug and Dilution with Excess Air and EGR

2012-09-24
2012-01-1980
This article deals with application of turbulent jet ignition technique to heavy duty multi-cylinder natural gas engine for mobile application. Pre-chamber spark plugs are identified as a promising means of achieving turbulent jet ignition as they require minimal engine modification with respect to component packaging in cylinder head and the ignition system. Detailed experiments were performed with a 6 cylinder 9.4 liter turbo-charged engine equipped with multi-point gas injection system to compare performance and emissions characteristics of operation with pre-chamber and conventional spark plug. The results indicate that ignition capability is significantly enhanced as flame development angle and combustion duration are reduced by upto 30 % compared to those with conventional spark plugs at certain operating points.
Journal Article

A Fast Crank Angle Resolved Zero-Dimensional NOx Model Implemented on a Field-Programmable Gate Array

2013-04-08
2013-01-0344
In the automotive industry, the piezo-based in-cylinder pressure sensor is getting commercialized and used in production vehicles. For example, the pressure sensor offers the opportunity to design algorithms for estimation of engine emissions, such as soot and NO , during a combustion cycle. In this paper a zero-dimensional NO model for a diesel engine is implemented that will be used in real time. The model is based on the thermal NO formation and the Zeldovich mechanism using two non-geometrical zones: burned and unburned zone. The influence of EGR on combustion temperature was modeled using a well-known thermodynamic identity where specific heat at constant pressure is included. Specific heat will vary with temperature and the gas composition. The model was implemented in LabVIEW using tools specific for an FPGA (Field-Programmable Gate Array).
Technical Paper

Influence of the Compression Ratio on the Performance and Emissions of a Mini HCCI Engine Fueled Ether with Diethyl

2007-10-29
2007-01-4075
Power supply systems play a very important role in applications of everyday life. Mainly, for low power generation, there are two ways of producing energy: electrochemical batteries and small engines. In the last few years many improvements have been carried out in order to obtain lighter batteries with longer duration but unfortunately the energy density of 1 MJ/kg seems to be an asymptotic value. If the energy source is an organic fuel with an energy density of around 29 MJ/kg and a minimum overall efficiency of only 3.5%, this device can surpass the batteries. Nowadays the most efficient combustion process is HCCI combustion which is able to combine high energy conversion efficiency and low emission levels with a very low fuel consumption. In this paper, an investigation has been carried out concerning the effects of the compression ratio on the performance and emissions of a mini, Vd = 4.11 [cm3], HCCI engine fueled with diethyl ether.
Technical Paper

Improving Ion Current Feedback for HCCI Engine Control

2007-10-29
2007-01-4053
In HCCI you do not have the same control of the combustion like in SI and Diesel engines. Controlling the start of a combustion event is a difficult task and requires feedback from previous cycles. This feedback can be retrieved from ion current measurements. By applying a voltage over the spark gap, ions will lead a current and a signal that represents the combustion in the cylinder will be retrieved. Voltages of 450 V were used. The paper describes a new method to enhance the combustion phasing from the Ion current trace in HCCI engines. The method is using the knowledge of how the signal should look. This is known due to the fact that the shape of the ion current signal is similar from cycle to cycle. This new observation is shown in the paper. Also the correlation between the ion current and CA50 was studied. Later the signals have been used for combustion feedback.
Technical Paper

Mini High Speed HCCI Engine Fueled with Ether: Load Range, Emission Characteristics and Optical Analysis

2007-08-05
2007-01-3606
Power supply systems play a very important role in everyday life applications. There are mainly two ways of producing energy for low power generation: electrochemical batteries and small engines. In the last few years, many improvements have been carried out in order to obtain lighter batteries with longer durations but unfortunately the energy density of 1 MJ/kg seems to be an asymptotic value. An energy source constituted of an organic fuel with an energy density around 29 MJ/kg and a minimum overall efficiency of only 3.5% could surpass batteries. Nowadays, the most efficient combustion process is HCCI combustion which has the ability to combine a high energy conversion efficiency with low emission levels and a very low fuel consumption. The present paper describes an investigation carried out on a modified model airplane engine, on how a pure HCCI combustion behaves in a small volume, Vd = 4.11 cm3, at very high engine speeds (up to 17,500 [rpm]).
Technical Paper

Lean Burn Versus Stoichiometric Operation with EGR and 3-Way Catalyst of an Engine Fueled with Natural Gas and Hydrogen Enriched Natural Gas

2007-01-23
2007-01-0015
Engine tests have been performed on a 9.6 liter spark-ignited engine fueled by natural gas and a mixture of 25/75 hydrogen/natural gas by volume. The scope of the work was to test two strategies for low emissions of harmful gases; lean burn operation and stoichiometric operation with EGR and a three-way catalyst. Most gas engines today, used in city buses, utilize the lean burn approach to achieve low NOx formation and high thermal efficiency. However, the lean burn approach may not be sufficient for future emissions legislation. One way to improve the lean burn strategy is to add hydrogen to the fuel to increase the lean limit and thus reduce the NOx formation without increasing the emissions of HC. Even so, the best commercially available technology for low emissions of NOx, HC and CO today is stoichiometric operation with a three-way catalyst as used in passenger cars.
Technical Paper

Validation of a Self Tuning Gross Heat Release Algorithm

2008-06-23
2008-01-1672
The present paper shows the validation of a self tuning heat release method with no need to model heat losses, crevice losses and blow by. Using the pressure and volume traces the method estimates the polytropic exponents (before, during and after the combustion event), by the use of the emission values and amount of fuel injected per cycle the algorithm calculates the total heat release. These four inputs are subsequently used for computing the heat release trace. The result is a user independent algorithm which results in more objective comparisons among operating points and different engines. In the present paper the heat release calculated with this novel method has been compared with the one computed using the Woschni correlation for modeling the heat transfer. The comparison has been made using different fuels (PRF0, PRF80, ethanol and iso-octane) making sweeps in relative air-fuel ratio, engine speed, EGR and CA 50.
Technical Paper

HCCI Combustion of Natural Gas and Hydrogen Enriched Natural Gas Combustion Control by Early Direct Injection of Diesel Oil and RME

2008-06-23
2008-01-1657
Natural gas and hydrogen enriched natural gas has been tested as fuels together with diesel oil and RME in a single cylinder Scania research engine. The gas was introduced as port injection while the diesel was introduced as early direct injection. Because the gas was premixed with air before combustion and the diesel was injected early in the compression stroke, the engine ran close to HCCI mode. However, a more precise description of the combustion would be PPC (Partially Premixed Combustion) as the diesel oil was not expected to be totally premixed. The experiments revealed that the combustion phasing could successfully be controlled by the amount of diesel oil injected for loads between 3.5 and 7.5 bar IMEPg at 1200 rpm. For a given combustion phasing, the hydrogen was not found to influence the required amount of diesel noticeable. However, a large difference between the RME and diesel oil could be seen by the necessity to inject more RME to obtain the same combustion phasing.
Technical Paper

Influence of the Wall Temperature and Combustion Chamber Geometry on the Performance and Emissions of a Mini HCCI Engine Fueled with Diethyl Ether

2008-04-14
2008-01-0008
Nowadays for small-scale power generation there are electrochemical batteries and mini engines. Many efforts have been done for improving the power density of the batteries but unfortunately the value of 1 MJ/kg seems to be asymptotic. If the energy source is an organic fuel which has an energy density of around 29 MJ/kg with a minimum overall efficiency of only 3.5%, this device would surpass the batteries. This paper is the fifth of a series of publications aimed to study the HCCI combustion process in the milli domain at high engine speed in order to design and develop VIMPA, Vibrating Microengine for Low Power Generation and Microsystems Actuation. Previous studies ranged from general characterization of the HCCI combustion process by using metal and optical engines, to more specific topics for instance the influence of the boundary layer and quenching distance on the quality of the combustion.
Technical Paper

HCCI Engine Modeling and Control using Conservation Principles

2008-04-14
2008-01-0789
The Homogeneous Charge Compression Ignition (HCCI) principle holds promise to increase efficiency and to reduce emissions from internal combustion engines. As HCCI combustion lacks direct ignition timing control and auto-ignition depends on the operating condition, control of auto-ignition is necessary. Since auto-ignition of a homogeneous mixture is very sensitive to operating conditions, a fast combustion phasing control is necessary for reliable operation. To this purpose, HCCI modeling and model-based control with experimental validation were studied. A six-cylinder heavy-duty HCCI engine was controlled on a cycle-to-cycle basis in real time by applying in-cylinder pressure feedback. A low-complexity physical model was developed, aiming at describing the major thermodynamic and chemical interactions in the course of an engine stroke. The model shows the importance of thermal interaction between the combustion and the cylinder walls.
Technical Paper

Evaluation of the Operating Range of Partially Premixed Combustion in a Multi Cylinder Heavy Duty Engine with Extensive EGR

2009-04-20
2009-01-1127
Partially Premixed Combustion (PPC) is a combustion concept by which it is possible to get low smoke and NOx emissions simultaneously. PPC requires high EGR levels and injection timings sufficiently early or late to extend the ignition delay so that air and fuel mix extensively prior to combustion. This paper investigates the operating region of single injection diesel PPC in a multi cylinder heavy duty engine resembling a standard build production engine. Limits in emissions and fuel consumption are defined and the highest load that fulfills these requirements is determined. Experiments are carried out at different engine speeds and a comparison of open and closed loop combustion control are made as well as evaluation of an extended EGR-cooling system designed to reduce the EGR temperature. In this study the PPC operating range proved to be limited.
Technical Paper

HCCI Operating Range in a Turbo-charged Multi Cylinder Engine with VVT and Spray-Guided DI

2009-04-20
2009-01-0494
Homogenous charge compression ignition (HCCI) has been identified as a promising way to increase the efficiency of the spark-ignited engine, while maintaining low emissions. The challenge with HCCI combustion is excessive pressure rise rate, quantified here with Ringing Intensity. Turbocharging enables increased dilution of the charge and thus a reduction of the Ringing Intensity. The engine used is an SI four cylinder base with 2.2L displacement and is equipped with a turbocharger. Combustion phasing control is achieved with individual intake/ exhaust cam phasing. Fuel injection with spray guided design is used. Cycle resolved combustion state is monitored and used for controlling the engine either in closed or open loop where balancing of cylinder to cylinder variations has to be done to run the engine at high HCCI load. When load is increased the NOx levels rise, the engine is then run in stoichiometric HCCI mode to be able to use a simple three-way catalyst.
Technical Paper

Closed-Loop Combustion Control Using Ion-current Signals in a 6-Cylinder Port-Injected Natural-gas Engine

2008-10-06
2008-01-2453
High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark ignition engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. Obtaining reliable spark ignition is difficult however with high pressure and dilution. There will be a limit to the amount of EGR that can be tolerated for each operating point. Open loop operation based on steady state maps is difficult since there is substantial dynamics both from the turbocharger and from the wall heat interaction. The proposed approach applies standard closed loop lambda control for controlling the overall air/fuel ratio. Furthermore, ion-current based dilution limit control is applied on the EGR in order to maximize EGR rate as long as combustion stability is preserved.
Technical Paper

A Novel Model for Computing the Trapping Efficiency and Residual Gas Fraction Validated with an Innovative Technique for Measuring the Trapping Efficiency

2008-09-09
2008-32-0003
The paper describes a novel method for calculating the residual gas fraction and the trapping efficiency in a 2 stroke engine. Assuming one dimensional compressible flow through the inlet and exhaust ports, the method estimates the instantaneous mass flowing in and out from the combustion chamber; later the residual gas fraction and trapping efficiency are estimated combining together the perfect displacement and perfect mixing scavenging models. It is assumed that when the intake port opens, the fresh mixture is pushing out the burned charge without any mixing and after a multiple of the time needed for the largest eddy to perform one rotation, the two gasses are instantly mixed up together and expelled. The result is a very simple algorithm that does not require much computational time and is able to estimate with high level of precision the trapping efficiency and the residual gas fraction in 2 stroke engines.
X