Refine Your Search

Topic

null

Search Results

Journal Article

A Copula-Based Approach for Model Bias Characterization

2014-04-01
2014-01-0735
Available methodologies for model bias identification are mainly regression-based approaches, such as Gaussian process, Bayesian inference-based models and so on. Accuracy and efficiency of these methodologies may degrade for characterizing the model bias when more system inputs are considered in the prediction model due to the curse of dimensionality for regression-based approaches. This paper proposes a copula-based approach for model bias identification without suffering the curse of dimensionality. The main idea is to build general statistical relationships between the model bias and the model prediction including all system inputs using copulas so that possible model bias distributions can be effectively identified at any new design configurations of the system. Two engineering case studies whose dimensionalities range from medium to high will be employed to demonstrate the effectiveness of the copula-based approach.
Journal Article

A Stochastic Bias Corrected Response Surface Method and its Application to Reliability-Based Design Optimization

2014-04-01
2014-01-0731
In vehicle design, response surface model (RSM) is commonly used as a surrogate of the high fidelity Finite Element (FE) model to reduce the computational time and improve the efficiency of design process. However, RSM introduces additional sources of uncertainty, such as model bias, which largely affect the reliability and robustness of the prediction results. The bias of RSM need to be addressed before the model is ready for extrapolation and design optimization. This paper further investigates the Bayesian inference based model extrapolation method which is previously proposed by the authors, and provides a systematic and integrated stochastic bias corrected model extrapolation and robustness design process under uncertainty. A real world vehicle design example is used to demonstrate the validity of the proposed method.
Journal Article

An Enhanced Input Uncertainty Representation Method for Response Surface Models in Automotive Weight Reduction Applications

2015-04-14
2015-01-0423
Vehicle weight reduction has become one of the viable solutions to ever-growing energy and environmental crisis. In vehicle design, response surface model (RSM) is commonly used as a surrogate of the high fidelity Finite Element (FE) model to reduce the computational time and improve the efficiency of design process. However, RSM introduces additional sources of uncertainty, such as model bias, which largely affects the reliability and robustness of the prediction results. The bias of RSM need to be addressed before the model is ready for extrapolation and design optimization. For the purpose of constructing and correcting the bias in RSMs, scheduling Design of Experiments (DOEs) must be conducted properly. This paper develops a method to arrange DOEs in order to build RSMs with high quality, considering the influence of input uncertainty.
Journal Article

Research on Validation Metrics for Multiple Dynamic Response Comparison under Uncertainty

2015-04-14
2015-01-0443
Computer programs and models are playing an increasing role in simulating vehicle crashworthiness, dynamic, and fuel efficiency. To maximize the effectiveness of these models, the validity and predictive capabilities of these models need to be assessed quantitatively. For a successful implementation of Computer Aided Engineering (CAE) models as an integrated part of the current vehicle development process, it is necessary to develop objective validation metric that has the desirable metric properties to quantify the discrepancy between multiple tests and simulation results. However, most of the outputs of dynamic systems are multiple functional responses, such as time history series. This calls for the development of an objective metric that can evaluate the differences of the multiple time histories as well as the key features under uncertainty.
Journal Article

Validation Metric for Dynamic System Responses under Uncertainty

2015-04-14
2015-01-0453
To date, model validation metric is prominently designed for non-dynamic model responses. Though metrics for dynamic responses are also available, they are specifically designed for the vehicle impact application and uncertainties are not considered in the metric. This paper proposes the validation metric for general dynamic system responses under uncertainty. The metric makes use of the popular U-pooling approach and extends it for dynamic responses. Furthermore, shape deviation metric was proposed to be included in the validation metric with the capability of considering multiple dynamic test data. One vehicle impact model is presented to demonstrate the proposed validation metric.
Journal Article

Development of a Comprehensive Validation Method for Dynamic Systems and Its Application on Vehicle Design

2015-04-14
2015-01-0452
Simulation based design optimization has become the common practice in automotive product development. Increasing computer models are developed to simulate various dynamic systems. Before applying these models for product development, model validation needs to be conducted to assess their validity. In model validation, for the purpose of obtaining results successfully, it is vital to select or develop appropriate metrics for specific applications. For dynamic systems, one of the key obstacles of model validation is that most of the responses are functional, such as time history curves. This calls for the development of a metric that can evaluate the differences in terms of phase shift, magnitude and shape, which requires information from both time and frequency domain. And by representing time histories in frequency domain, more intuitive information can be obtained, such as magnitude-frequency and phase-frequency characteristics.
Technical Paper

A Research on Multi-Disciplinary Optimization of the Vehicle Hood at Early Design Phase

2020-04-14
2020-01-0625
Vehicle hood design is a typical multi-disciplinary task. The hood has to meet the demands of different attributes like safety, dynamics, statics, and NVH (Noise, Vibration, Harshness). Multi-disciplinary optimization (MDO) of vehicle hood at early design phase is an efficient way to support right design decision and avoid late-phase design changes. However, due to lacking in CAD models, it is difficult to realize MDO at early design phase. In this research, a new method of design and optimization is proposed to improve the design efficiency. Firstly, an implicit parametric hood model is built to flexibly change shape and size of hood structure, and generate FE models automatically. Secondly, four types of stiffness analysis, one type of modal analysis, together with pedestrian head impact analysis were established to describe multi-disciplinary concern of vehicle hood design.
Technical Paper

Effect Analysis for the Uncertain Parameters on Self-Piercing Riveting Simulation Model Using Machine Learning Model

2020-04-14
2020-01-0219
Self-piercing rivets (SPR) are efficient and economical joining methods used in the manufacturing of lightweight automotive bodies. The finite element method (FEM) is a potentially effective way to assess the joining process of SPRs. However, uncertain parameters could lead to significant mismatches between the FEM predictions and physical tests. Thus, a sensitivity study on critical model parameters is important to guide the high-fidelity modeling of the SPR insertion process. In this paper, an axisymmetric FEM model is constructed to simulate the insertion process of the SPR using LS-DYNA/explicit. Then, several surrogate models are evaluated and trained using machine learning methods to represent the relations between selected inputs (e.g., material properties, interfacial frictions, and clamping force) and outputs (cross-section dimensions).
Technical Paper

A Design and Optimization Method for Pedestrian Lower Extremity Injury Analysis with the aPLI Model

2020-04-14
2020-01-0929
As pedestrian protection tests and evaluations have been officially incorporated into new C-NCAP, more stringent requirements have been placed on pedestrian protection performance. In this study, in order to reduce the injury of the vehicle front end structure to the pedestrian's lower extremity during the collision, the advanced pedestrian legform impactor (aPLI) model was used in conjunction with the finite element vehicle model for collision simulation based on the new C-NCAP legform test evaluation regulation. This paper selected the key components which have significant influences on the pedestrian's leg protection performance based on the CAE vehicle model, including front bumper, front-cover plate, upper impact pillar, impact beam and lower support plate, to form a simplified model and conducted parametric modeling based on it.
Technical Paper

An Optimization Study of Occupant Restraint System for Different BMI Senior Women Protection in Frontal Impacts

2020-04-14
2020-01-0981
Accident statistics have shown that older and obese occupants are less adaptable to existing vehicle occupant restraint systems than ordinary middle-aged male occupants, and tend to have higher injury risk in vehicle crashes. However, the current research on injury mechanism of aging and obese occupants in vehicle frontal impacts is scarce. This paper focuses on the optimization design method of occupant restraint system parameters for specific body type characteristics. Three parameters, namely the force limit value of the force limiter in the seat belt, pretensioner preload of the seat belt and the proportionality coefficient of mass flow rate of the inflator were used for optimization. The objective was to minimize the injury risk probability subjected to constraints of occupant injury indicator values for various body regions as specified in US-NCAP frontal impact tests requirements.
Journal Article

A Bayesian Inference based Model Interpolation and Extrapolation

2012-04-16
2012-01-0223
Model validation is a process to assess the validity and predictive capabilities of a computer model by comparing simulation results with test data for its intended use of the model. One of the key difficulties for model validation is to evaluate the quality of a computer model at different test configurations in design space, and interpolate or extrapolate the evaluation results to untested new design configurations. In this paper, an integrated model interpolation and extrapolation framework based on Bayesian inference and Response Surface Models (RSM) is proposed to validate the designs both within and outside of the original design space. Bayesian inference is first applied to quantify the distributions' hyper-parameters of the bias between test and CAE data in the validation domain. Then, the hyper-parameters are extrapolated from the design configurations to untested new design. They are then followed by the prediction interval of responses at the new design points.
Journal Article

An Ensemble Approach for Model Bias Prediction

2013-04-08
2013-01-1387
Model validation is a process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. In reliability based design, the intended use of the model is to identify an optimal design with the minimum cost function while satisfying all reliability constraints. It is pivotal that computational models should be validated before conducting the reliability based design. This paper presents an ensemble approach for model bias prediction in order to correct predictions of computational models. The basic idea is to first characterize the model bias of computational models, then correct the model prediction by adding the characterized model bias. The ensemble approach is composed of two prediction mechanisms: 1) response surface of model bias, and 2) Copula modeling of a series of relationships between design variables and the model bias, between model prediction and the model bias.
Journal Article

On Stochastic Model Interpolation and Extrapolation Methods for Vehicle Design

2013-04-08
2013-01-1386
Finite Element (FE) models are widely used in automotive for vehicle design. Even with increasing speed of computers, the simulation of high fidelity FE models is still too time-consuming to perform direct design optimization. As a result, response surface models (RSMs) are commonly used as surrogates of the FE models to reduce the turn-around time. However, RSM may introduce additional sources of uncertainty, such as model bias, and so on. The uncertainty and model bias will affect the trustworthiness of design decisions in design processes. This calls for the development of stochastic model interpolation and extrapolation methods that can address the discrepancy between the RSM and the FE results, and provide prediction intervals of model responses under uncertainty.
Technical Paper

Reliability-Based Robust Design Optimization Using the EDR Method

2007-04-16
2007-01-0550
This paper attempts to integrate a derivative-free probability analysis method to Reliability-Based Robust Design Optimization (RBRDO). The Eigenvector Dimension Reduction (EDR) method is used for the probability analysis method. It has been demonstrated that the EDR method is more accurate and efficient than the Second-Order Reliability Method (SORM) for reliability and quality assessment. Moreover, it can simultaneously evaluate both reliability and quality without any extra expense. Two practical engineering problems (vehicle side impact and layered bonding plates) are used to demonstrate the effectiveness of the EDR method.
Technical Paper

Complementary Intersection Method (CIM) for System Reliability Analysis

2007-04-16
2007-01-0558
Researchers desire to evaluate system reliability uniquely and efficiently. Despite its strong technical demand, little progress has been made on system reliability analysis in the last two decades. Up to now, bound methods for system reliability prediction have been dominant. For system reliability bounds, the second order bound method gives fairly accurate prediction for system reliability assuming that the probabilities of second-order joint events are accurately obtained. Two primary challenges in system reliability analysis are evaluation of the probabilities of second-order joint events and no unique system reliability for design optimization. Firstly, the greatest technical demand is found in an accurate and efficient method to numerically evaluate the probability of a second-order joint event.
Technical Paper

Innovative Six Sigma Design Using the Eigenvector Dimension-Reduction (EDR) Method

2007-04-16
2007-01-0799
This paper presents an innovative approach for quality engineering using the Eigenvector Dimension Reduction (EDR) Method. Currently industry relies heavily upon the use of the Taguchi method and Signal to Noise (S/N) ratios as quality indices. However, some disadvantages of the Taguchi method exist such as, its reliance upon samples occurring at specified levels, results to be valid at only the current design point, and its expensiveness to maintain a certain level of confidence. Recently, it has been shown that the EDR method can accurately provide an analysis of variance, similar to that of the Taguchi method, but is not hindered by the aforementioned drawbacks of the Taguchi method. This is evident because the EDR method is based upon fundamental statistics, where the statistical information for each design parameter is used to estimate the uncertainty propagation through engineering systems.
Technical Paper

A Study of Model Validation Method for Dynamic Systems

2010-04-12
2010-01-0419
This paper presents an enhanced Bayesian based model validation method together with probabilistic principal component analysis (PPCA). The PPCA is employed to address multivariate correlation and to reduce the dimensionality of the multivariate functional responses. The Bayesian hypothesis testing is used to quantitatively assess the quality of a multivariate dynamic system. Unlike the previous approach, the differences between test and CAE results are used for dimension reduction though PPCA and then to assess the model validity. In addition, physics-based thresholds are defined and transformed to the PPCA space for Bayesian hypothesis testing. This new approach resolves some critical drawbacks of the previous method and provides desirable properties of a validation method, e.g., symmetry. A dynamic system with multiple functional responses is used to demonstrate this new approach.
Technical Paper

Enhanced Error Assessment of Response Time Histories (EEARTH) Metric and Calibration Process

2011-04-12
2011-01-0245
Computer Aided Engineering (CAE) has become a vital tool for product development in automotive industry. Increasing computer models are developed to simulate vehicle crashworthiness, dynamic, and fuel efficiency. Before applying these models for product development, model validation needs to be conducted to assess the validity of the models. However, one of the key difficulties for model validation of dynamic systems is that most of the responses are functional responses, such as time history curves. This calls for the development of an objective metric which can evaluate the differences of both the time history and the key features, such as phase shift, magnitude, and slope between test and CAE curves. One of the promising metrics is Error Assessment of Response Time Histories (EARTH), which was recently developed. Three independent error measures that associated with physically meaningful characteristics (phase, magnitude, and slope) were proposed.
Technical Paper

Design Optimization of Vehicle Body NVH Performance Based on Dynamic Response Analysis

2017-03-28
2017-01-0440
Noise-vibration-harshness (NVH) design optimization problems have become major concerns in the vehicle product development process. The Body-in-White (BIW) plays an important role in determining the dynamic characteristics of vehicle system during the concept design phase. Finite Element (FE) models are commonly used for vehicle design. However, even though the speed of computers has been increased a lot, the simulation of FE models is still too time-consuming due to the increase in model complexity. For complex systems, like vehicle body structures, the numerous design variables and constraints make the FE simulations based optimization design inefficient. This calls for the development of a systematic and efficient approach that can effectively perform optimization to further improve the NVH performance, while satisfying the stringent design constraints.
Technical Paper

A Similarity Evaluation Metric for Mesh Based CAE Model Simplification and Its Application on Vehicle

2017-03-28
2017-01-1332
To obtain higher efficiency in analysis process, simplification methods for computer-aided engineering (CAE) models are required in engineering. Current model simplification methods can meet certain precision and efficiency requirement, but these methods mainly concentrate on model features while ignoring model mesh which is also critical to efficiency of the analysis process and preciseness of the results. To address such issues, an integrated mesh simplification and evaluation process is proposed in this paper. The mesh is simplified to fewer features (e.g. faces, edges, and vertices) through edge collapsing based on quadric error metric. Then curvatures and normal vectors which are the objects to be evaluated are extracted from the original and simplified models for comparison. To obtain accurate results, the geometric information of mesh nodes and elements are both considered in this evaluation process. The proposed method is implemented on a vehicle crash test.
X