Refine Your Search

Topic

Search Results

Journal Article

A Unique Application of Gasoline Particulate Filter Pressure Sensing Diagnostics

2021-08-06
Abstract Gasoline particulate filters (GPFs) are important aftertreatment components that enable gasoline direct injection (GDI) engines to meet European Union (EU) 6 and China 6 particulate number emissions regulations for nonvolatile particles greater than 23 nm in diameter. GPFs are rapidly becoming an integral part of the modern GDI aftertreatment system. The Active Exhaust Tuning (EXTUN) Valve is a butterfly valve placed in the tailpipe of an exhaust system that can be electronically positioned to control exhaust noise levels (decibels) under various vehicle operating conditions. This device is positioned downstream of the GPF, and variations in the tuning valve position can impact exhaust backpressures, making it difficult to monitor soot/ash accumulation or detect damage/removal of the GPF substrate. The purpose of this work is to present a unique example of subsystem control and diagnostic architecture for an exhaust system combining GPF and EXTUN.
Journal Article

Fault Diagnosis Approach for Roller Bearings Based on Optimal Morlet Wavelet De-Noising and Auto-Correlation Enhancement

2019-05-02
Abstract This article presents a fault diagnosis approach for roller bearing by applying the autocorrelation approach to filtered vibration measured signal. An optimal Morlet wavelet filter is applied to eliminate the frequency associated with interferential vibrations; the raw measured signal is filtered with a band-pass filter based on a Morlet wavelet function whose parameters are optimized based on maximum Kurtosis. Autocorrelation enhancement is applied to the filtered signal to further reduce the residual in-band noise and highlight the periodic impulsive feature. The proposed technique is used to analyze the experimental measured signal of investigated vehicle gearbox. An artificial fault is introduced in vehicle gearbox bearing an orthogonal placed groove on the inner race with the initial width of 0.6 mm approximately. The faulted bearing is a roller bearing located on the gearbox input shaft - on the clutch side.
Journal Article

Torque and Pressure CFD Correlation of a Torque Converter

2019-08-22
Abstract A torque converter was instrumented with 29 pressure transducers inside five cavities under study (impeller, turbine, stator, clutch cavity between the pressure plate and the turbine shell). A computer model was created to establish correlation with measured torque and pressure. Torque errors between test and simulation were within 5% and K-Factor and torque ratio errors within 2%. Turbulence intensity on the computer model was used to simulate test conditions representing transmission low and high line pressure settings. When turbulence intensity was set to 5%, pressure simulation root mean square errors were within 11%-15% for the high line pressure setting and up to 34% for low line pressure setting. When turbulence intensity was increased to 50% for the low line pressure settings, a 6% reduced root mean square error in the pressure simulations was seen.
Journal Article

Passive Flow Control on a Ground-Effect Diffuser Using an Inverted Wing

2018-08-13
Abstract In this experimental and computational study a novel application of aerodynamic principles in altering the pressure recovery behavior of an automotive-type ground-effect diffuser was investigated as a means of enhancing downforce. The proposed way of augmenting diffuser downforce production is to induce in its pressure recovery action a second pressure drop and an accompanying pressure rise region close to the diffuser exit. To investigate this concept with a diffuser-equipped bluff body, an inverted wing was situated within the diffuser flow channel, close to the diffuser exit. The wing’s suction surface acts as a passive flow control device by increasing streamwise flow velocity and reducing static pressure near the diffuser exit. Therefore, a second-stage pressure recovery develops along the diffuser’s overall pressure recovery curve as the flow travels from the diffuser’s low pressure, high velocity inlet to its high pressure, low velocity exit.
Journal Article

High Power-Density, High Efficiency, Mechanically Assisted, Turbocharged Direct-Injection Jet-Ignition Engines for Unmanned Aerial Vehicles

2019-05-02
Abstract More than a decade ago, we proposed combined use of direct injection (DI) and jet ignition (JI) to produce high efficiency, high power-density, positive-ignition (PI), lean burn stratified, internal combustion engines (ICEs). Adopting this concept, the latest FIA F1 engines, which are electrically assisted, turbocharged, directly injected, jet ignited, gasoline engines and work lean stratified in a highly boosted environment, have delivered peak power fuel conversion efficiencies well above 46%, with specific power densities more than 340 kW/liter. The concept, further evolved, is here presented for unmanned aerial vehicle (UAV) applications. Results of simulations for a new DI JI ICE with rotary valve, being super-turbocharged and having gasoline or methanol as working fuel, show the opportunity to achieve even larger power densities, up to 430 kW/liter, while delivering a near-constant torque and, consequently, a nearly linear power curve over a wide range of speeds.
Journal Article

Process Regulations and Mechanism of WEDM of Combustor Material

2019-06-07
Abstract This study discusses the experimental investigation on WEDM of combustor material (i.e., nimonic 263). Experimentation has been executed by varying pulse-on time (Ton), pulse-off time (Toff), peak current (Ip), and spark gap voltage (Sv). Material removal rate (MRR), surface roughness (SR), and wire wear rate (WWR) are employed as process performance characteristics. Experiments are designed as per the box-Behnken design technique. Parametric optimization has also been performed using response surface methodology. Besides this, field-emission scanning electron microscope (FE-SEM) and an optical microscope are utilized to characterize WEDMed and worn-out wire surfaces. It is observed that both surfaces contain micro-cracks, craters, spherical droplets, and a lump of debris. Furthermore, the mechanism of recast layer formation has been critically evaluated to apprehend a better understanding of the technique. The key features of the experimental procedure are also highlighted.
Journal Article

Multicriteria Optimization, Sensitivity Analysis, and Prediction of Bond Characteristics of Vacuum Diffusion Bonded Aero Engine Ti6Al4V Alloy Joints

2019-12-13
Abstract Joining titanium (Ti) alloys with conventional processes is difficult due to their complex structural properties and ability of phase transformation. Concerning all the difficulties, diffusion bonding is considered as an appropriate process for joining Ti alloys. Ti6Al4V, which is an α+β alloy widely used for aero engine component manufacturing, is diffusion bonded in this investigation. The diffusion bonding process parameters such as bonding temperature, bonding pressure, and holding time were optimized to achieve desired bonding characteristics such as shear strength, bonding strength, bonding ratio, and thickness ratio using response surface methodology (RSM). Empirical relationships were developed for the prediction of the bond characteristics, and sensitivity analysis was performed to determine the increment and decrement tendency of the shear strength with respect to the bonding parameters.
Journal Article

Mathematical Model of Heat-Controlled Accumulator (HCA) for Microgravity Conditions

2020-01-20
Abstract It is reasonable to use a two-phase heat transfer loop (TPL) in a thermal control system (TCS) of spacecraft with large heat dissipation. One of the key elements of TPL is a heat-controlled accumulator (HCA). The HCA represents a volume which is filled with vapor and liquid of a single working fluid without bellows. The pressure in a HCA is controlled by the heater. The heat and mass transfer processes in the HCA can proceed with a significant nonequilibrium. This has implications on the regulation of TPL. This article presents a mathematical model of nonequilibrium heat and mass transfer processes in an HCA for microgravity conditions. The model uses the equations of mass and energy conservation separately for the vapor and liquid phases. Interfacial heat and mass transfer is also taken into account. It proposes to use the convective component k for the level of nonequilibrium evaluation.
Journal Article

Using Numerical Simulation to Obtain Length of Constant Area Section in Scramjet Combustor

2020-03-16
Abstract Constant area section length downstream to the fuel injection point is a crucial dimension of scramjet duct geometry. It has a major contribution in creating the maximum effective pressure inside the combustor that is required for propulsion. The length is limited by the thermal choking phenomenon, which occurs when heat is added in a flow through constant area duct. As per theory, to avoid thermal choking the constant area section length depends upon the inlet conditions and the rate of heat addition. The complexity related to mixing and combustion process inside the supersonic stream makes it difficult to predict the rate of heat addition and in turn the length. Recent efforts of simulating the reacting flow inside scramjet combustors are encouraging and can be useful in this regard. The presented work attempts to use simulation results of scramjet combustion for predicting the constant area section length for a typical scramjet combustor.
Journal Article

Thermal Energy Performance Evaluation and Architecture Selection for Off-Highway Equipment

2021-08-31
Abstract An accurate and rapid thermal model of an axle-brake system is crucial to the design process of reliable braking systems. Proper thermal management is necessary to avoid damaging effects, such as brake fade, thermal cracking, and lubricating oil degradation. In order to understand the thermal effects inside of a lubricated braking system, it is common to use Computational Fluid Dynamics (CFD) to calculate the heat generation and rejection. However, this is a difficult and time-consuming process, especially when trying to optimize a braking system. This article uses the results from several CFD runs to train a Stacked Ensemble Model (SEM), which allows the use of machine learning (ML) to predict the systems’ temperature based on several input design parameters. The robustness of the SEM was evaluated using uncertainty quantification.
Journal Article

Effect of Fuel-to-Air Ratio on Oxidation and Interfacial Structure in Galvanizing of a Dual-Phase Steel

2021-04-19
Abstract Automotive-grade high-strength steels are galvanized for improved corrosion resistance. However, selective oxidation of alloying elements during annealing heat-treatment may influence the subsequent zinc (Zn) coating quality. The formation of internal and external oxides depends on the alloy composition, especially the Si/Mn ratio, and the oxygen potential of the annealing atmosphere. In this work, a dual-phase (DP) steel was intercritically annealed with varied fuel-to-air ratios in a direct-fired furnace and then galvanized in a Zn bath with 0.2 wt% Al. The type of internal and external oxides and the interfacial structures between the steel substrate, the Al-Fe-Zn inhibition layer, and the Zn coating were examined by using site-specific focused ion beam (FIB) and transmission electron microscopy (TEM).
Journal Article

Semi-empirical Combustion Efficiency Prediction of an Experimental Air-Blasted Tubular Combustor

2020-10-19
Abstract The preliminary gas turbine combustor design process uses a huge amount of empirical correlations to achieve more optimized designs. Combustion efficiency, in relation to the basic dimensions of the combustor, is one of the most critical performance parameters. In this study, semi-empirical correlations for combustion efficiencies are examined and correlation coefficients have been revised using an experimental air-blasted tubular combustor that uses JP8 kerosene aviation fuel. Besides, droplet diameter and effective evaporation constant parameters have been investigated for different operating conditions. In the study, it is observed that increased air velocity significantly improves the atomization process and decreases droplet diameters, while increasing the mass flow rate has a positive effect on the atomization—the relative air velocity in the air-blast atomizer increases and the fuel droplets become finer.
Journal Article

Improving Hole Expansion Ratio by Parameter Adjustment in Abrasive Water Jet Operations for DP800

2018-09-17
Abstract The use of Abrasive Water Jet (AWJ) cutting technology can improve the edge stretchability in sheet metal forming. The advances in technology have allowed significant increases in working speeds and pressures, reducing the AWJ operation cost. The main objective of this work was to determine the effect of selected AWJ cutting parameters on the Hole Expansion Ratio (HER) for a DP800 (Dual-Phase) Advanced High-Strength Steel (AHSS) with s0 = 1.2 mm by using a fractional factorial design of experiments for the Hole Expansion Tests (HET). Additionally, the surface roughness and residual stresses were measured on the holes looking for a possible relation between them and the measured HER. A deep drawing quality steel DC06 with s0 = 1.0 mm was used for reference. The fracture occurrence was captured by high-speed cameras and by Acoustic Emissions (AE) in order to compare both methods.
Journal Article

Technological Stability of the Liner in a Separable Metal Composite Pressure Vessel

2020-04-21
Abstract The article considers one of the possible mechanisms of loading the solidity of a cylindrical metal composite high-pressure vessel (MC HPV). This mechanism manifests itself as delamination of a thin-walled metal shell (liner) from a more rigid composite shell causing local buckling. A similar effect can be detected in the manufacturing process of MC HPV, when the composite shell is formed by winding with tension a carbon fiber-reinforced plastic tape on the liner. Pressure transfer from the composite shell to the liner is carried out by the method of temperature analogy, that is, by cooling the composite shell, thermally insulated from the liner. To solve the problem of externally confined liner local buckling an approach is proposed, which is based on three points: the introduction of local technological deviations inherent in actual structures, the determination of the general stress-strain state, and a real-time deforming.
Journal Article

TOC

2020-05-15
Abstract TOC
Journal Article

TOC

2020-05-15
Abstract TOC
Journal Article

TOC

2020-08-26
Abstract TOC
Journal Article

Model-Based Precise Air-Fuel Ratio Control for Gaseous Fueled Engines

2020-10-09
Abstract In this article, an adaptive state estimation algorithm for precise air-fuel ratio (AFR) control is presented. AFR control is a critical part of internal combustion engine (ICE) control, and tight AFR control delivers lower engine emissions, better engine fuel economy, and better engine transient performance. The proposed control algorithm significantly improves transient AFR control to eliminate and reduce the amplitude of the lean and rich spikes during transients. The new algorithm is first demonstrated in simulation (using Matlab/SimulinkTM and GT-PowerTM) and then verified on a test engine. The engine tests are conducted using the European Transient Cycle (ETC) with HoribaTM double-ended dynamometer. The developed algorithm utilizes a nonlinear physics-based engine model in the observer and advanced control principles with modifications to solve real industrial control issues.
Journal Article

Methodology for Controlling Nitrogen Oxides Emissions during Cold Start

2021-09-02
Abstract The current publication considers several methodologies to minimize tailpipe (TP) nitrogen oxides (NOx) emissions during cold start operation. A standard, 2019 aftertreatment design of diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR)/ammonia oxidation catalyst (AMOX) was used as the baseline. Cold start NOx conversion and TP NOx emissions improvements were measured when a larger SCR, dual diesel exhaust fluid (DEF) dosing, and an electric heater were added to the exhaust configuration. Additional improvements were achieved by an improved cold start combustion mode was developed.
Journal Article

Thermal Energy Performance Evaluation and Architecture Selection for Off-Highway Equipment

2021-08-31
Abstract Off-highway equipment are subjected to diverse environmental conditions, severe duty cycles, and multiple simultaneous operations. Due to its continuous, high-power adverse operating conditions, equipment are exposed to high thermal loads, which result in the deterioration of its performance and efficiency. This article describes a model-based system simulation approach for thermal performance evaluation of a self-propelled off-highway vehicle. The objective of developing the simulation model including thermal fidelity is to quantify the impact of thermal loads on vehicular system/subsystems performance. This article also describes the use of simulation models for driving architectural design decisions and virtual test replication in all stages of product development.
X