Refine Your Search

Topic

Search Results

Journal Article

Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector

2010-04-12
2010-01-0601
Operation of flex fuel vehicles requires operation with a range of fuel properties. The significant differences in the heat of vaporization and energy density of E0-E100 fuels and the effect on spray development need to be fully comprehended when developing engine control strategies. Limited enthalpy for fuel vaporization needs to be accounted for when developing injection strategies for cold start, homogeneous and stratified operation. Spray imaging of multi-hole gasoline injectors with fuels ranging from E0 to E100 and environmental conditions that represent engine operating points from ambient cold start to hot conditions was performed in a spray chamber. Schlieren visualization technique was used to characterize the sprays and the results were compared with Laser Mie scattering and Back-lighting technique. Open chamber experiments were utilized to provide input and validation of a CFD model.
Journal Article

Pilot Injection Ignition Properties Under Low-Temperature, Dilute In-Cylinder Conditions

2013-10-14
2013-01-2531
Measurements of ignition behavior, homogeneous reactor simulations employing detailed kinetics, and quantitative in-cylinder imaging of fuel-air distributions are used to delineate the impact of temperature, dilution, pilot injection mass, and injection pressure on the pilot ignition process. For dilute, low-temperature conditions characterized by a lengthy ignition delay, pilot ignition is impeded by the formation of excessively lean mixture. Under these conditions, smaller pilot mass or higher injection pressures further lengthen the pilot ignition delay. Similarly, excessively rich mixtures formed under relatively short ignition delay conditions typical of conventional diesel combustion will also prolong the ignition delay. In this latter case, smaller pilot mass or higher injection pressures will shorten the ignition delay. The minimum charge temperature required to effect a robust pilot ignition event is strongly dependent on charge O2 concentration.
Journal Article

Investigation of Fuel Effects on Spray Atomization and Evaporation Studied for a Multi-hole DISI Injector with a Late Injection Timing

2011-08-30
2011-01-1982
The influence of fuel composition on sprays was studied in an injection chamber at DISI conditions with late injection timing. Fuels with high, mid and low volatility (n-hexane, n-heptane, n-decane) and a 3-component mixture with similar fuel properties like gasoline were investigated. The injection conditions were chosen to model suppressed or rapid evaporation. Mie scattering imaging and phase Doppler anemometry were used to investigate the liquid spray structure. A spray model was set up applying the CFD-Code OpenFOAM. The atomization was found to be different for n-decane that showed a smaller average droplet size due to viscosity dependence of injected mass. And for evaporating conditions, a stratification of the vapor components in the 3-component fuel spray was observed.
Technical Paper

Characteristics and Application of Gasoline Injectors to SI Engines by Means of Measured Liquid Fuel Distributions

1997-10-01
972947
The spray formation of two different gasoline port fuel injectors has been studied in three stages of the mixture formation process using measured liquid fuel distributions. The injector characteristics were determined in fundamental chamber experiments providing the time dependent spray penetration and the internal structure of the spray in quiescent air by a laser light sheet technique. For the sane injectors the interaction between port flow and spray was investigated inside the port of a production engine. A strong dependence of the fuel distribution inside the port on the engine operation point was found for both injectors. This fuel distribution provides information on wall film generation and the optimum orientation of the injector inside the suction pipe.
Technical Paper

Gasoline: Influence of Fuel-Oxygen on NOx-Emissions

1998-05-04
981366
Nitric oxides are the key pollutants emitted from SI engines today. In the work presented, the effect of different fuel-components on the NOx-emission of a four stroke SI engine and cross connections between different fuel properties were investigated in front of and behind the catalyst and compared to investigations described in literature. For the investigation presented a variety of different fuels has been produced. The content of aromatics, olefins, oxygen and the mid-range volatility has been changed systematically while only fuels with a good driveability were included in the investigation. The NOx-emission of 17 fuels tested was measured in front of and behind the catalyst. The tests were carried out with a single cylinder test engine using a constant air/fuel ratio.
Technical Paper

Locally Resolved Measurement of Gas-Phase Temperature and EGR-Ratio in an HCCI-Engine and Their Influence on Combustion Timing

2007-04-16
2007-01-0182
Laser-based measurements of charge temperature and exhaust gas recirculation (EGR) ratio in an homogeneous charge compression ignition (HCCI) engine are demonstrated. For this purpose, the rotational coherent anti-Stokes Raman spectroscopy technique (CARS) was used. This technique allows temporally and locally resolved measurements in combustion environments through only two small line-of-sight optical accesses and the use of standard gasoline as a fuel. The investigated engine is a production-line four-cylinder direct-injection gasoline engine with the valve strategy modified to realize HCCI-operation. CARS-measurements were performed in motored and fired operation and the results are compared to polytropic calculations. Studies of engine speed, load, valve timing, and injection pressure were conducted showing the strong influence of charge temperature on the combustion timing.
Technical Paper

Optical Investigations on Partially Premixed Diesel Combustion for Different Operating Parameters

2008-04-14
2008-01-0041
Combustion processes with partially or fully premixed cylinder load combined with self-ignition provide high combustion efficiency and low emissions of Nitrogen Oxides (NOx) and particulate matter at the same time. Since the number of diesel operated passenger cars is still rising, it would be interesting, if such a combustion concept can be realized in an ordinary DI-Diesel engine which is operated with conventional diesel fuel. In this study, the influence of nozzle geometry, Tintake, pTDC and injection timing on the functioning chain of combustion was analyzed in a transparent single-cylinder diesel engine equipped with a common rail injection system by means of optical measurement techniques. Simultaneously, different optical diagnostics (laser-based and non laser-based) were used to study the fuel distribution, ignition and combustion in the combustion chamber of the optically accessible diesel engine. The liquid fuel was visualized by Mie scattering at 532nm.
Technical Paper

Vapor-Phase Structures of Diesel-Type Fuel Sprays: An Experimental Analysis

1998-10-19
982543
The vapor phase of an evaporating spray from a heavy-duty Diesel common-rail injection system has been investigated with an optical diagnostic technique based on linear Raman scattering, which has been extended to the application in fuel sprays. One-dimensional spatially resolved Raman measurements of the air/fuel-ratio have been performed in the spray region with high local and temporal resolution in an injection chamber at an air pressure of 4.5 MPa and at a temperature of 450°C. The influence of different parameters, such as rail pressure, nozzle geometry and injection duration on the temporal evolution of the local air/fuel-ratio in the vapor phase has been studied quantitatively, and results from a selected spatial location are compared. Furthermore, the effect of physical/chemical fuel properties on the evaporation dynamics has been investigated by performing measurements with two different fuels.
Technical Paper

Characterization of Multi-hole Spray and Mixing of Ethanol and Gasoline Fuels under DI Engine Conditions

2010-10-25
2010-01-2151
Because of their robustness and cost performance, multi-hole gasoline injectors are being adopted as the direct injection (DI) fuel injector of choice as vehicle manufacturers look for ways to reduce fuel consumption without sacrificing power and emission performance. To realize the full benefits of direct injection, the resulting spray needs to be well targeted, atomized, and appropriately mixed with charge air for the desirable fuel vapor concentration distributions in the combustion chamber. Ethanol and ethanol-gasoline blends synergistically improve the turbo-charged DI gasoline performance, especially in down-sized, down-sped and variable-valve-train engine architecture. This paper presents the spray imaging results from two multi-hole DI gasoline injectors with different design, fueled with pure ethanol (E100) or gasoline (E0), under homogeneous and stratified-charge conditions that represent typical engine operating points.
Technical Paper

Determination of the Gas-Phase Temperature in the Vaporizing Spray of a GDI-Injector Using Pure Rotational CARS

2004-03-08
2004-01-1350
Detailed experimental investigation of fuel sprays are of utmost importance for the development of appropriate injection systems for gasoline direct injection (GDI) engines. A number of laser based techniques have been developed to study the spray formation. The temperature of the gas phase surrounding the fuel droplets was not accessible up to now. In this work for the first time, to the best of our knowledge, gas-phase temperatures were measured within the vaporizing spray of a high pressure GDI injector using pure rotational coherent anti-Stokes Raman spectroscopy (CARS). Results from an isooctane fuel spray of a multi-hole injector in a heated injection chamber are presented with the probe volume located at a distance of 70mm downstream the injector nozzle in the centre of the spray cone.
Technical Paper

Visualization and Analysis of the Impingement Processes of a Narrow-Cone DI Gasoline Spray

2001-05-07
2001-01-2023
The direct injection spray-wall interactions were investigated experimentally using high-speed laser-sheet imaging, shadowgraphy, wetted footprints and phase Doppler interferometry techniques. A narrow-cone high-pressure swirl injector is used to inject iso-octane fuel onto a plate, at three different impact angles inside a pressurized chamber. Heated air and plate conditions were compared with unheated cases. Injection interval was also varied in the heated case to compare dry- and wet- wall impingement behaviors. High-speed macroscopic Mie-scattering images showed that presence of wall and air temperature has only minor effect on the bulk spray structure and penetration speed for the narrow-cone injector tested. The overall bulk motions of the spray plume and its spatial position at a given time are basically unaffected until a few millimeters before impacting the wall.
Technical Paper

2D Mapping and Quantification of the In-Cylinder Air/Fuel-Ratio in a GDI Engine by Means of LIF and Comparison to Simultaneous Results from 1D Raman Measurements

2001-05-07
2001-01-1977
The optimization of the vaporization and mixture formation process is of great importance for the development of modern gasoline direct injection (GDI) engines, because it influences the subsequent processes of the ignition, combustion and pollutant formation significantly. In consequence, the subject of this work was the development of a measurement technique based on the laser induced exciplex fluorescence (LIF), which allows the two dimensional visualization and quantification of the in-cylinder air/fuel ratio. A tracer concept consisting of benzene and triethylamine dissolved in a non-fluorescent base fuel has been used. The calibration of the equivalence ratio proportional LIF-signal was performed directly inside the engine, at a well known mixture composition, immediately before the direct injection measurements were started.
Technical Paper

Catalyzed Gasoline Particulate Filter (GPF) Performance: Effect of Driving Cycle, Fuel, Catalyst Coating

2017-10-08
2017-01-2366
Because of the increased use of gasoline direct engine (GDI) in the automobile industry, there is a significant need to control particulates from GDI engines based on emission regulations. One potential technical approach is the utilization of a gasoline particulate filter (GPF). The successful adoption of this emission control technology needs to take many aspects into consideration and requires a system approach for optimization. This study conducted research to investigate the impact of vehicle driving cycles, fuel properties and catalyst coating on the performance of GPF. It was found that driving cycle has significant impact on particulate emission. Fuel quality still plays a role in particulate emissions, and can affect the GPF performance. Catalyzed GPF is preferred for soot regeneration, especially for the case that the vehicle operation is dominated by congested city driving condition, i.e. low operating temperatures. The details of the study are presented in the paper.
Technical Paper

Self-Ignition Calculation of Diesel Spray

2012-04-16
2012-01-1262
This paper describes a computer simulation of Diesel spray formation and the locations of self-ignition nuclei. The spray is divided into small elementary volumes in which the amounts of fuel and fuel vapours, air, mean, maximum and minimum fuel droplet diameter are calculated, as well as their number. The total air-fuel and air-fuel vapour ratios are calculated for each elementary volume. The paper introduces a new criterion for determining self-ignition nuclei, based on assumptions that the strongest self-ignition probability lies in those elementary volumes containing the stoichiometric air ratio, where the fuel is evaporated or the fuel droplet diameter is equal to or lower than 0.0065 mm. The most efficient combustion in regard to consumption and emission will be in those elementary volumes containing stoichiometric air ratio, and fuel droplets with the lowest mean diameters. Measurements of injection and combustion were carried out in a transparent research engine.
Technical Paper

Charge Motion Benefits of Valve Deactivation to Reduce Fuel Consumption and Emissions in a GDi, VVA Engine

2011-04-12
2011-01-1221
Requirements for reduced fuel consumption with simultaneous reductions in regulated emissions require more efficient operation of Spark Ignited (SI) engines. An advanced valvetrain coupled with Gasoline Direct injection (GDi) provide an opportunity to simultaneously reduce fuel consumption and emissions. Work on a flex fuel GDi engine has identified significant potential to reduce throttling by using Early Intake Valve Closing (EIVC) and Late Intake Valve Closing (LIVC) strategies to control knock and load. High loads were problematic when operating on gasoline for particulate emissions, and low loads were not able to fully minimize throttling due to poor charge motion for the EIVC strategy. The use of valve deactivation was successful at reducing high load particulate emissions without a significant airflow penalty below 3000 RPM. Valve deactivation did increase the knocking tendency for knock limited fuels, due to increased heat transfer that increased charge temperature.
Technical Paper

Characterization of Internal flow and Spray of Multihole DI Gasoline Spray using X-ray Imaging and CFD

2011-08-30
2011-01-1881
Multi-hole DI injectors are being adopted in the advanced downsized DISI ICE powertrain in the automotive industry worldwide because of their robustness and cost-performance. Although their injector design and spray resembles those of DI diesel injectors, there are many basic but distinct differences due to different injection pressure and fuel properties, the sac design, lower L/D aspect ratios in the nozzle hole, closer spray-to-spray angle and hense interactions. This paper used Phase-Contrast X ray techniques to visualize the spray near a 3-hole DI gasoline research model injector exit and compared to the visible light visualization and the internal flow predictions using with multi-dimensional multi-phase CFD simulations. The results show that strong interactions of the vortex strings, cavitation, and turbulence in and near the nozzles make the multi-phase turbulent flow very complicated and dominate the near nozzle breakup mechanisms quite unlike those of diesel injections.
Technical Paper

Interactions of Multi-hole DI Sprays with Charge Motion and their Implications to Flexible Valve-trained Engine Performance

2011-08-30
2011-01-1883
Advanced valvetrain coupled with Direct Injection (DI) provides an opportunity to simultaneous reduction of fuel consumption and emissions. Because of their robustness and cost performance, multi-hole injectors are being adopted as gasoline DI fuel injectors. Ethanol and ethanol-gasoline blends synergistically improve the performance of a turbo-charged DI gasoline engine, especially in down-sized, down-sped and variable-valvetrain engine architecture. This paper presents Mie-scattering spray imaging results taken with an Optical Accessible Engine (OAE). OAE offers dynamic and realistic in-cylinder charge motion with direct imaging capability, and the interaction with the ethanol spray with the intake air is studied. Two types of cams which are designed for Early Intake Valve Close (EIVC) and Later Intake Valve Close (LIVC) are tested, and the effect of variable valve profile and deactivation of one of the intake valves are discussed.
Technical Paper

Influence of the fuel quantity on the spray formation and ignition under current engine relevant conditions

2011-08-30
2011-01-1928
Flexible and multiple injections are an important strategy to fulfill today's exhaust emission regulations. To optimize injection processes with an increasing number of adjustable parameters knowledge about the basic mechanisms of spray breakup, propagation, evaporation and ignition is mandatory. In the present investigation the focus is set on spray formation and ignition. In order to simulate current diesel-engine conditions measurements were carried out in a high-temperature (1000 K) and high-pressure (10 MPa) vessel with optical accesses. A piezo servo-hydraulic injector pressurized up to 200 MPa was used to compare four single injection durations and four multi-injection patterns in the ignition phase. All measurements were performed with CEC RF-03-06, a legislative reference fuel. For the spray measurements, a program of 16 to 18 different operating points was chosen to simulate engine conditions from cold start to full load.
Technical Paper

An Experimental Study of the Flow Structure Inside the Catalytic Converter of a Gasoline Engine

1995-02-01
950784
The flow structure inside the catalytic converter of gasoline engines is very important for consideration of the catalyst light-off condition, converter durability and conversion efficiency. However, the available experimental data under actual engine exhaust conditions are quite limited due to its complicated configuration, critical operating conditions and difficult optical access. Therefore, an experimental study was performed, using laser Doppler velocimetry technique, to measure the velocity distributions inside two production dual-monolith catalytic converters fitted on a firing gasoline engine over several engine operating conditions. This paper reports the normal velocity characteristics measured in a plane 1 mm away from the front surface of first monolith. A small fraction of titanium (IV) isopropoxide was dissolved in gasoline for generating titanium dioxide seeding particles during the engine combustion.
Technical Paper

Diesel Cold-Starting Study Using Optically Accessible Engines

1995-10-01
952366
An experimental and numerical study was carried out to simulate the diesel spray behavior during cold starting conditions inside two single-cylinder optically accessible engines. One is an AVL single-cylinder research diesel engine converted for optical access; the other is a TACOM/LABECO engine retrofitted with mirror-coupled endoscope access. The first engine is suitable for sophisticated optical diagnostics but is constrained to limited consecutive fuel injections or firings. The second one is located inside a micro-processor controlled cold room; therefore it can be operated under a wide range of practical engine conditions and is ideal for cycle-to-cycle variation study. The intake and blow-by flow rates are carefully measured in order to clearly define the operation condition. In addition to cylinder pressure measurement, the experiment used 16-mm high-speed movie photography to directly visualize the global structures of the sprays and ignition process.
X