Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Characterizing the Influence of Temperature and Vacuum Quality on the Desorption Kinetics of Commercial Adsorbents

2008-06-29
2008-01-2096
Understanding the effects of dynamic thermal and vacuum regeneration on VOC desorption kinetics is needed for the development of regenerable trace contaminant control air revitalization systems. The effects of temperature and vacuum quality on the desorption kinetics of ethanol from Carbosieve SIII were examined using 1 hour regeneration cycles. The effect of vacuum quality on ethanol desorption was studied by exposing adsorption tubes loaded with ethanol to low pressures (1.0, 0.5, 0.3, and 0.12 atm) at various thermal regeneration temperatures (160, 100, 70, and 25 °C). At 1 atm of pressure, ethanol removal was found to increase from 2% at 25 °C, to 25% at 70 °C, to 55% at 100 °C, and to 77% at 160 °C. Decreasing the atmospheric pressure from 1 to 0.1 atm for 1 hr did not significantly enhance Carbosieve SIII regeneration at ambient temperatures (25 °C). However, heating the adsorbent at low pressures enhanced its regeneration.
Technical Paper

Fundamental Ice Crystal Accretion Physics Studies

2011-06-13
2011-38-0018
Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice-crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations.
Technical Paper

Particle Trajectory and Icing Analysis of the E3 Turbofan Engine Using LEWICE3D Version 3

2011-06-13
2011-38-0048
Particle trajectory and ice shape calculations were made for the Energy Efficient Engine (E₃) using the LEWICE3D Version 3 software. The particle trajectory and icing computations were performed using the new "block-to-block" collection efficiency method which has been incorporated into the LEWICE3D Version 3 software. The E₃ was developed by NASA and GE in the early 1980s as a technology demonstrator and is representative of a modern high bypass turbofan engine. The E₃ flow field was calculated using the NASA Glenn ADPAC turbomachinery flow solver. Computations were performed for the low pressure compressor of the E₃ for a Mach .8 cruise condition at 11,887 meters assuming a standard warm day for three drop sizes and two drop distributions typically used in aircraft design and certification. Particle trajectory computations were made for water drop sizes of 5, 20 and 100 microns.
Technical Paper

Technology Test Bed and Hydrogen Cold Flow Facilities at the Marshall Space Flight Center

1993-04-01
931435
The Technology Test Bed and Hydrogen Cold Flow facilities at NASA’s Marshall Space Flight Center (MSFC) in Huntsville, Alabama provide unique testing capabilities for the aerospace community. Located at the Advanced Engine Test Facility (AETF), these facilities are operated and maintained by MSFC Propulsion Laboratory personnel. They provide a systems and components level testing platform for validating new technology concepts and advanced systems design and for gaining a better understanding of test article internal environments. A discussion follows of the particular capabilities of each facility to provide a range of testing options for specific test articles.
Technical Paper

Traction Drive System Design Considerations for A Lunar Roving Vehicle

1970-02-01
700023
For an optimum design, the weight, energy consumption, and operational flexibility of the traction drive system for a lunar roving vehicle must be considered along with the power supply, motor, and power train. Other problems considered in this paper include: environment and motor dissipation; motor type (a-c or d-c) and commutation if d-c; motor controller (switching of large currents); delivery of torque at varying speeds; the power train; use of regenerative braking and conservation of energy; and power supply voltage variation. These problems are studied in the light of certain general system specifications, which fall into weight, performance, and environment categories. Tradeoff studies are considered for purposes of optimization in each of these areas. Special consideration is given to the controller and system design as it pertains to regenerative braking and the conservation of energy.
X