Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Eurocae WG-72 Activities

2012-03-16
The presentation provides an overview about the activities of Eurocae Working Group 72 (WG-72) starting with a brief synopsis of the context which suggested why such a committee should be established in 2006. It then goes into further detail about the drivers for the work of the committee, which call for the products to be delivered. It addresses some of the challenges with respect to its users. It points out that one of the lessons the committee learned was importance of the focus on the users, such that the products provide their maximum utility. Hence, the users should better be among the participants to achieve this objective. Other industries have dealt with the subject of Information System (or Cyber-Physical) Security long before this industry was forced to consider it. Consequently there are many industry standards and national or international norms, which may help to develop what is deemed needed for Civil Aviation.
Video

Spotlight on Design Insight: Fuel Efficiency: Fuel Economy Testing

2015-05-07
“Spotlight on Design: Insight” features an in-depth look at the latest technology breakthroughs impacting mobility. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. As global concerns about the negative consequences of greenhouse gases on the environment increase, regulatory agencies around the world are taking serious steps to address the issue of tailpipe emissions In the episode “Fuel Efficiency: Fuel Economy Testing” (12:05), engineers at the EPA’s National Vehicle and Fuel Emissions Laboratory demonstrate how different vehicles are tested for emissions, and AVL’s technical team shows how accurate tailpipe emissions can be measured and reported.
Journal Article

High Power-Density, High Efficiency, Mechanically Assisted, Turbocharged Direct-Injection Jet-Ignition Engines for Unmanned Aerial Vehicles

2019-05-02
Abstract More than a decade ago, we proposed combined use of direct injection (DI) and jet ignition (JI) to produce high efficiency, high power-density, positive-ignition (PI), lean burn stratified, internal combustion engines (ICEs). Adopting this concept, the latest FIA F1 engines, which are electrically assisted, turbocharged, directly injected, jet ignited, gasoline engines and work lean stratified in a highly boosted environment, have delivered peak power fuel conversion efficiencies well above 46%, with specific power densities more than 340 kW/liter. The concept, further evolved, is here presented for unmanned aerial vehicle (UAV) applications. Results of simulations for a new DI JI ICE with rotary valve, being super-turbocharged and having gasoline or methanol as working fuel, show the opportunity to achieve even larger power densities, up to 430 kW/liter, while delivering a near-constant torque and, consequently, a nearly linear power curve over a wide range of speeds.
Journal Article

Process Regulations and Mechanism of WEDM of Combustor Material

2019-06-07
Abstract This study discusses the experimental investigation on WEDM of combustor material (i.e., nimonic 263). Experimentation has been executed by varying pulse-on time (Ton), pulse-off time (Toff), peak current (Ip), and spark gap voltage (Sv). Material removal rate (MRR), surface roughness (SR), and wire wear rate (WWR) are employed as process performance characteristics. Experiments are designed as per the box-Behnken design technique. Parametric optimization has also been performed using response surface methodology. Besides this, field-emission scanning electron microscope (FE-SEM) and an optical microscope are utilized to characterize WEDMed and worn-out wire surfaces. It is observed that both surfaces contain micro-cracks, craters, spherical droplets, and a lump of debris. Furthermore, the mechanism of recast layer formation has been critically evaluated to apprehend a better understanding of the technique. The key features of the experimental procedure are also highlighted.
Journal Article

Using Numerical Simulation to Obtain Length of Constant Area Section in Scramjet Combustor

2020-03-16
Abstract Constant area section length downstream to the fuel injection point is a crucial dimension of scramjet duct geometry. It has a major contribution in creating the maximum effective pressure inside the combustor that is required for propulsion. The length is limited by the thermal choking phenomenon, which occurs when heat is added in a flow through constant area duct. As per theory, to avoid thermal choking the constant area section length depends upon the inlet conditions and the rate of heat addition. The complexity related to mixing and combustion process inside the supersonic stream makes it difficult to predict the rate of heat addition and in turn the length. Recent efforts of simulating the reacting flow inside scramjet combustors are encouraging and can be useful in this regard. The presented work attempts to use simulation results of scramjet combustion for predicting the constant area section length for a typical scramjet combustor.
Journal Article

Laser-Assisted Filler-Based Joining for Battery Assembly in Aviation

2020-10-19
Abstract A key problem of the construction of fully electric aircraft is the limited energy density of battery packs. It is generally accepted that this can only be overcome via new, denser battery chemistry together with a further increase in the efficiency of power utilization. One appealing approach for achieving the latter is using laser-assisted filler-based joining technologies, which offers unprecedented flexibility for achieving battery cell connections with the least possible electrical loss. This contribution presents our results on the effect of various experimental and process parameters on the electrical and mechanical properties of the laser-formed bond.
Journal Article

An Investigation on the Electrical Energy Capacity of Cylindrical Lithium-Ion and Lithium Iron Phosphate Battery Cells for Hybrid Aircraft

2020-10-19
Abstract Improving the energy performance of batteries can increase the reliability of electric aircraft. To achieve this goal, battery management systems (BMS) are required to keep the temperature within the battery pack and cells below the safety limits and make the temperature distribution as even as possible. Batteries have a limited service life as a result of unwanted chemical reactions, physical changes that cause the loss of active materials in the structure, and internal resistance increase during the charging and discharging cycle of the battery. These changes usually affect the electrical performance of batteries. Battery life can be increased only by reducing or preventing unwanted chemical reactions. Lithium-ion (Li-ion) batteries are a suitable option due to their high specific energy and energy density advantages. In this study, the necessity of heat management is emphasized. The discharge tests of the Li-ion battery provided 94.6 Wh under 10C and 90.9 Wh under 1C.
Journal Article

Three-Dimensional Thermal Study on Lithium-Ion Batteries in a Hybrid Aircraft: Numerical and Experimental Investigations

2020-10-19
Abstract The range of an aircraft is determined by the amount of energy that its batteries can store. Today, larger batteries are used to increase the range of electric vehicles, although energy efficiency decreases as the weight of the vehicles increases. Among the elements, lithium (Li) is the lightest and has the highest electrochemical potential. Therefore, the use of Li-ion batteries is recommended for hybrid aircraft. In addition, Li-ion batteries are the most common type of battery that is used in portable electronic devices such as smartphones, tablets, and laptops. However, Li-ion batteries may explode due to temperature. Therefore, the thermal analysis of Li-ion batteries was investigated both experimentally and numerically. Li-ion batteries were connected in series (the number is 9). Noboru’s theory of heat generation was discussed in the estimation of energy data.
Journal Article

Semi-empirical Combustion Efficiency Prediction of an Experimental Air-Blasted Tubular Combustor

2020-10-19
Abstract The preliminary gas turbine combustor design process uses a huge amount of empirical correlations to achieve more optimized designs. Combustion efficiency, in relation to the basic dimensions of the combustor, is one of the most critical performance parameters. In this study, semi-empirical correlations for combustion efficiencies are examined and correlation coefficients have been revised using an experimental air-blasted tubular combustor that uses JP8 kerosene aviation fuel. Besides, droplet diameter and effective evaporation constant parameters have been investigated for different operating conditions. In the study, it is observed that increased air velocity significantly improves the atomization process and decreases droplet diameters, while increasing the mass flow rate has a positive effect on the atomization—the relative air velocity in the air-blast atomizer increases and the fuel droplets become finer.
Journal Article

Lightweight Carbon Composite Chassis for Engine Start Lithium Batteries

2018-03-07
Abstract The supersession of metallic alloys with lightweight, high-strength composites is popular in the aircraft industry. However, aviation electronic enclosures for large format batteries and high power conversion electronics are still primarily made of aluminum alloys. These aluminum enclosures have attractive properties regrading structural integrity for the heavy internal parts, electromagnetic interference (EMI) suppression, electrical bonding for the internal cells, and/or electronics and failure containment. This paper details a lightweight carbon fiber composite chassis developed at Meggitt Sensing Systems (MSS) Securaplane, with a copper metallic mesh co-cured onto the internal surfaces resulting in a 50% reduction in weight when compared to its aluminum counterpart. In addition to significant weight reduction, it provides equal or improved performance with respect to EMI, structural and flammability performance.
Standard

Contamination definition for Fuel Tank Inerting Systems

2016-02-01
WIP
AIR6374
The scope of this document is to provide a guidance of the common contamination types and their concentrations in order to size FTIS components and characterize its performance on generic commercial aircraft.
Standard

Performance based packaging standard for lithium batteries as cargo on aircraft

2016-03-18
WIP
AS6413
This standard is intended to demonstrate and document the control of the potential hazards from lithium cells or batteries (UN 3090 and 3480) when transported as cargo on aircraft. [still need to identify if we are addressing global (external fire) or local (battery internal failures)] This standard addresses the need to control the hazards which might arise from a failure from an individual cell by containing the hazards within the package. This specific hazards addressed within this standard are: • Uncontrolled fire • Rapid overpressure pulse within compartment
Standard

Performance based package standard for lithium batteries as cargo on aircraft - Oven Test

2020-09-01
WIP
AS6413/1
This category specification provides a minimum performance standard that may be used for mitigation means, in addition to the foundation specification (AS6413), to provide external fire thermal threat capability which supports the safe shipment of lithium batteries as cargo on aircraft. This slash sheet provides information and testing to assist or augment the performance of the packaging used for shipping of lithium batteries. If protective equipment and measures are used, the performance of the battery package under the challenge of external heat and fire may be improved and enhanced.  
Standard

Performance based package standard for lithium batteries as cargo on aircraft - Direct Flame Test

2020-09-01
WIP
AS6413/2
This category specification provides a minimum performance standard that may be used for mitigation means, in addition to the foundation specification (AS6413), to provide external fire thermal threat capability which supports the safe shipment of lithium batteries as cargo on aircraft. This slash sheet provides information and testing to assist or augment the performance of the packaging used for shipping of lithium batteries. If protective equipment and measures are used, the performance of the battery package under the challenge of external heat and fire may be improved and enhanced.  
Standard

Adapter, Closed-Circuit Fuel Servicing

2021-03-11
WIP
AS6848
Aircraft-mounted Closed Circuit Refueling receiver adapter – Definition of standard interface dimensions for adapter which interfaces with MIL-PRF-52747F Nozzle.
Standard

Fuel Tank Inerting System Ground and Flight Test Methodology Recommended Practice

2015-05-19
WIP
ARP6063
This SAE Aerospace Recommended Practice (ARP) provides guidance for the verification and certification of a “commercial” fixed wing aircraft fuel tank inerting system (FTIS) and will provide technical references and data regarding ground and flight testing of an FTIS. The intent of this ARP is to address issues associated with the verification requirements based on current regulatory guidance per AC25.981-2C
Standard

Skew and Disconnect Detection in High Lift Systems

2021-09-09
WIP
ARP5775
The document provides a definition of skew and disconnect occuring in high lift systems in flight controls including their hazard assessment, describes generic solutions and provides a for specifying requirements.
Standard

Design and Test Recommendations for Dielectric Strength and Insulation Resistance for Line Replaceable Units

2021-04-26
WIP
ARP5769
Scope: This Aerospace Recommended Practice (ARP) provides guidelines for specifying dielectric withstanding strength and insulation resistance design and test requirements for aircraft line replaceable units (LRU's) used within a flight control and/or a utility system. 1.1 Purpose The testing is intended to verify that an LRU can operate safely at its rated voltage and withstand momentary over potentials due to switching, troubleshooting testing, surges, etc.. The testing is also intended to verify adequate design margin of the insulation system and detect workmanship problems.
X