Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Electrooxidation of Organics in Waste Water

1990-07-01
901312
Electrooxidation is a means of removing organic solutes directly from waste waters without the use of chemical expendables. Research sponsored by NASA Johnson Space Center is currently being pursued at Texas A&M University to demonstrate the feasibility of the concept for oxidation of organic impurities common to urine, shower waters and space habitat humidity condensates. Electrooxidation of urine and waste water ersatz was experimentally demonstrated. This paper discusses the electrooxidation principle, reaction kinetics, efficiency, power, size, experimental test results and water reclamation applications. Process operating potentials and the use of anodic oxidation potentials that are sufficiently low to avoid oxygen formation and chloride oxidation are described. The design of a novel electrochemical system that incorporates a membrane-based electrolyte based on parametric test data and current fuel cell technology is presented.
Technical Paper

Integrated Water Recovery System Test

2003-07-07
2003-01-2577
The work presented in this paper summarizes the performance of subsystems used during an integrated advanced water recovery system test conducted by the Crew and Thermal Systems Division (CTSD) at NASA-Johnson Space Center (JSC). The overall objective of this test was to demonstrate the capability of an integrated advanced water recovery system to produce potable quality water for at least six months. Each subsystem was designed for operation in microgravity. The primary treatment system consisted of a biological system for organic carbon and ammonia removal. Dissolved solids were removed by reverse osmosis and air evaporation systems. Finally, ion exchange technology in combination with photolysis or photocatalysis was used for polishing of the effluent water stream. The wastewater stream consisted of urine and urine flush water, hygiene wastewater and a simulated humidity condensate.
Technical Paper

Early Results of an Integrated Water Recovery System Test

2001-07-09
2001-01-2210
The work presented in this paper summarizes the early results of an integrated advanced water recovery system test conducted by the Crew and Thermal Systems Division (CTSD) at NASA-Johnson Space Center (JSC). The system design and the results of the first two months of operation are presented. The overall objective of this test is to demonstrate the capability of an integrated advanced water recovery system to produce potable quality water for at least six months. Each subsystem is designed for operation in microgravity. The primary treatment system consists of a biological system for organic carbon and ammonia removal. Dissolved solids are removed by reverse osmosis and air evaporation systems. Finally, ion exchange technology in combination with photolysis or photocatalysis is used for polishing of the effluent water stream. The wastewater stream consists of urine and urine flush water, hygiene wastewater and a simulated humidity condensate.
Technical Paper

Development and Fabrication of a Breadboard Electrochemical Water Recovery System

1993-07-01
932032
A breadboard Electrochemical Water Recovery System (EWRS) that is designed to produce potable water from a composite waste stream without the use of expendables is described in this paper. Umpqua Research Company working together with NASA/JSC developed a sequential three-step process to accomplish this task. Electrolysis removes approximately 60% of the organic contaminants from ersatz composite waste water containing a total organic carbon (TOC) concentration of 707 mg/L. The contaminants in this solution consist of organic and inorganic impurities common to laundry, shower, handwash, and urine waste water. Useful gases and organic acids are the chief by-products of the first step. The partially oxidized electrolysis solution is then transferred to the electrodialysis process where ionized organic and inorganic species are concentrated into a brine. The deionized solution of recovered water contains ∼6% of the original organic contaminants and >90% of the original water.
Technical Paper

A Hybrid Regenerative Water Recovery System for Lunar/Mars Life Support Applications

1992-07-01
921276
Long duration manned space missions will require integrated biological and physicochemical processes for recovery of resources from wastes. This paper discusses a hybrid regenerative biological and physicochemical water recovery system designed and built at NASA's Crew and Thermal Systems Division (CTSD) at Johnson Space Center (JSC). The system is sized for a four-person crew and consists of a two-stage, aerobic, trickling filter bioreactor; a reverse osmosis system; and a photocatalytic oxidation system. The system was designed to accommodate high organic and inorganic loadings and a low hydraulic loading. The bioreactor was designed to oxidize organics to carbon dioxide and water; the reverse osmosis system reduces inorganic content to potable quality; and the photocatalytic oxidation unit removes residual organic impurities (part per million range) and provides in-situ disinfection. The design and performance of the hybrid system for producing potable/hygiene water is described.
Technical Paper

Post-Treatment of Reclaimed Waste Water Based on an Electrochemical Advanced Oxidation Process

1992-07-01
921275
The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. Lynntech, Inc., working with NASA-JSC, is developing an electrochemical UV reactor which generates oxidants, operates at low temperatures and requires no chemical expendables. The reactor is the basis for an advanced oxidation process, in which electrochemically generated ozone and hydrogen peroxide are used, in combination with ultraviolet light irradiation, to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency and process reaction kinetics are discussed. At the completion of this development effort, the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.
Technical Paper

An Assessment of Waste Processing/Resource Recovery Technologies for Lunar/Mars Life Applications

1992-07-01
921271
NASA's future manned missions to explore the Solar system are by nature of long duration, mandating extensive regeneration of life support consumables from wastes generated in space-based habitats. Long duration exploration missions would otherwise be prohibitive due to the number and frequency of energy-intensive resupply missions from Earth. Resource recovery is therefore a critical component of the controlled ecological life support system (CELSS). In order to assess resource recovery technologies for CELSS applications, the Crew and Thermal Systems Division at NASA-Johnson Space Center convened a three-day workshop to assess potential resource recovery technologies for application in a space-based CELSS. Ninety experts from government, industry and academia attended the workshop. This paper describes the methodology of assessing and ranking of these technologies. Recommendations and issues are identified.
Technical Paper

Design of an Ultrafiltration/Reverse Osmosis Prototype Subsystem for the Treatment of Spacecraft Wastewaters

1995-07-01
951738
Long duration missions in space will require regenerative processes to recover water for crew reuse. Membrane processes are attractive as a primary processor in water recovery systems (WRS) because of their design simplicity, low specific energy requirements, small size, and high water recovery. However, fouling has historically been regarded as a disadvantage of membrane-based processes. This fouling is often caused by micelle buildup on the membrane surface by high-molecular-weight organics (e.g., from soaps and laundry detergents). This paper describes a two-stage fouling-resistant ultrafiltration (UF)/reverse osmosis (RO) prototype subsystem, which was designed and constructed for a WRS in the Life Support Systems Integration Facility (LSSIF) at NASA Johnson Space Center (NASA/JSC). The first stage of the subsystem is a tube-side-feed hollow-fiber UF module that removes contaminants that tend to foul spiral-wound modules.
Technical Paper

Continuous Flow, Water Post-Treatment System for Human Spacecraft Application

1995-07-01
951741
An aqueous phase catalytic oxidation system (APCOS) was designed, tested and delivered to NASA/Johnson Space Center (JSC). The APCOS removes residual organic impurities in reclaimed water to a level acceptable for potable use and to provide disinfection. The reactor, which contains a heterogeneous catalyst consisting of a noble metal on an inert support medium, operates at 120 - 150 °C and at fluid pressures of several atmospheres to maintain an aqueous liquid phase. Pressurized gaseous oxygen, used as the oxidant, is directly injected into the liquid phase. A description of the subsystems process hardware is presented. The APCOS was demonstrated to mineralize organic impurities at concentrations of 100 mg/L total organic carbon (TOC) to < .5 mg/L (<500 μg/L TOC). In addition, disinfection features were demonstrated with microbial challenge tests.
Technical Paper

Urine Pretreatment for Waste Water Processing Systems

1983-07-11
831113
Recovery of high quality water from urine is an essential part of life support on a Space Station to avoid costly launch and resupply penalties. Water can be effectively recovered from urine by distillation following pretreatment by a chemical agent to inhibit microorganism contamination and fix volatile ammonia constituents. This paper presents the results of laboratory investigations of several pretreatment chemicals which were tested at several concentration levels in combination with sulfuric acid in urine. The optimum pretreatment formulation was then evaluated with urine in the Hamilton Standard Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES). Over 2,600 hours of test time was accumulated. Results of these laboratory and system tests are presented in this paper.
Technical Paper

Test Results on Reuse of Reclaimed Shower Water - A Summary

1989-07-01
891443
A microgravity whole body shower and waste water recovery system were evaluated in three separate closed loop tests at NASA/JSC. These tests covered a period from August 1985 to June 1987 in which shower waste water was reclaimed and reused for showering. Test persons showered in a preprototype whole body shower following a protocol similar to that anticipated for the Space Station. Each test was performed by using different water recovery system technologies which included phase change distillation and two separate reverse osmosis processes. These were integrated with post-treatment for the final purification of the reclaimed water. The phase change, a preprototype Thermoelectric Hollow Fiber Membrane Evaporation Subsystem was used for the initial test with chemical pretreatment of the shower waste water input. A reverse osmosis dynamic membrane system was used for the second test and a 2-stage ultrafiltration/reverse osmosis system for the third test.
Technical Paper

Photocatalytic Post-Treatment in waste Water Reclamation Systems

1989-07-01
891508
An ultraviolet driven photocatalytic post-treatment technique for the purification of waste water distillates, reverse osmosis permeates and spacecraft habitat atmospheric humidity condensates is described. Experimental results show that organic impurity carbon content of simulated reclamation waters at nominal 40 PPM level are reduced to, PPB using a recirculating batch reactor. The organic impurities common to reclaimed waste waters are completely oxidized employing minimum expendables (stoichiometric oxygen). This paper discusses test results and parametric data obtained for design and fabrication of a breadboard system. The parametric testing includes UV light source evaluation, photolysis vs photocatalysis comparison, oxygen concentration dependence, temperature dependence, reactor mixing, disinfection features, photocatalyst loading, photocatalyst degradation studies and power consumption estimates.
X