Refine Your Search

Topic

Author

Search Results

Journal Article

Impact of Fuel Sprays on In-Cylinder Flow Length Scales in a Spark-Ignition Direct-Injection Engine

2017-03-28
2017-01-0618
The interaction of fuel sprays and in-cylinder flow in direct-injection engines is expected to alter kinetic energy and integral length scales at least during some portions of the engine cycle. High-speed particle image velocimetry was implemented in an optical four-valve, pent-roof spark-ignition direct-injection single-cylinder engine to quantify this effect. Non-firing motored engine tests were performed at 1300 RPM with and without fuel injection. Two fuel injection timings were investigated: injection in early intake stroke represents quasi-homogenous engine condition; and injection in mid compression stroke mimics the stratified combustion strategy. Two-dimensional crank angle resolved velocity fields were measured to examine the kinetic energy and integral length scale through critical portions of the engine cycle. Reynolds decomposition was applied on the obtained engine flow fields to extract the fluctuations as an indicator for the turbulent flow.
Technical Paper

Optimizing Gaseous Fuel-Air Mixing in Direct Injection Engines Using an RNG Based k-ε Model

1998-02-23
980135
Direct injection of natural gas under high pressure conditions has emerged as a promising option for improving engine fuel economy and emissions. However, since the gaseous injection technology is new, limited experience exists as to the optimum configuration of the injection system and associated combustion chamber design. The present study uses KIVA-3 based, multidimensional modeling to improve the understanding and assist the optimization of the gaseous injection process. Compared to standard k-ε models, a Renormalization Group Theory (RNG) based k-ε model [1] has been found to be in better agreement with experiments in predicting gaseous penetration histories for both free and confined jet configurations. Hence, this validated RNG model is adopted here to perform computations in realistic engine geometries.
Technical Paper

First and Second Law Analyses of a Naturally-Aspirated, Miller Cycle, SI Engine with Late Intake Valve Closure

1998-02-23
980889
A naturally-aspirated, Miller cycle, Spark-Ignition (SI) engine that controls output with variable intake valve closure is compared to a conventionally-throttled engine using computer simulation. Based on First and Second Law analyses, the two load control strategies are compared in detail through one thermodynamic cycle at light load conditions and over a wide range of loads at 2000 rpm. The Miller Cycle engine can use late intake valve closure (LIVC) to control indicated output down to 35% of the maximum, but requires supplemental throttling at lighter loads. The First Law analysis shows that the Miller cycle increases indicated thermal efficiency at light loads by as much as 6.3%, primarily due to reductions in pumping and compression work while heat transfer losses are comparable.
Technical Paper

A Field Study of Distance Perception with Large-Radius Convex Rearview Mirrors

1998-02-23
980916
One of the primary reasons that FMVSS 111 currently requires flat rearview mirrors as original equipment on the driver's side of passenger cars is a concern that convex mirrors might reduce safety by causing drivers to overestimate the distances to following vehicles. Several previous studies of the effects of convex rearview mirrors have indicated that they do cause overestimations of distance, but of much lower magnitude than would be expected based on the mirrors' levels of image minification and the resulting visual angles experienced by drivers. Previous studies have investigated mirrors with radiuses of curvature up to 2000 mm. The present empirical study was designed to investigate the effects of mirrors with larger radiuses (up to 8900 mm). Such results are of interest because of the possible use of large radiuses in some aspheric mirror designs, and because of the information they provide about the basic mechanisms by which convex mirrors affect distance perception.
Technical Paper

Comparison of Diesel Oxidation Catalyst Performance on an Engine and a Gas Flow Reactor

2007-04-16
2007-01-0231
This paper analyzes and compares reactor and engine behavior of a diesel oxidation catalyst (DOC) in the presence of conventional diesel exhaust and low temperature premixed compression ignition (PCI) diesel exhaust. Surrogate exhaust mixtures of n-undecane (C11H24), ethene (C2H4), CO, O2, H2O, NO and N2 are defined for conventional and PCI combustion and used in the gas flow reactor tests. Both engine and reactor tests use a DOC containing platinum, palladium and a hydrocarbon storage component (zeolite). On both the engine and reactor, the composition of PCI exhaust increases light-off temperature relative to conventional combustion. However, while nominal conditions are similar, the catalyst behaves differently on the two experimental setups. The engine DOC shows higher initial apparent HC conversion efficiencies because the engine exhaust contains a higher fraction of trappable (i.e., high boiling point) HC.
Technical Paper

Algorithmic Maintenance of a Diesel Engine Electronic Fuel Feed Controller by Criterion of the Content of Soot in Exhaust Gas

2007-04-16
2007-01-0973
The feature of offered algorithm is that it allows, without record and analysis of the display diagram, to estimate a running cycle of a diesel engine parameters which characterize ecological and economic performances. The mathematical model described in report allows to determine connection of coefficient of filling, pressure and temperature of air boost, factor of excess of air with effectiveness ratio of combustion and contents of soot in exhaust gas and to take into account this connection at a choice initial data for control fuel feed or for elaboration of diesel engine dynamic model. The algorithm incorporated, for example, in the microcontroller of an electronic fuel feed controller allows analyzing the sensors data and theoretically determine of smoke amount in the exhaust gases for chosen cycle of fuel feed. The restriction of smoke is possible by criterion dD/dGT, where D - contents of soot in exhaust gas and GT - fuel cycle submission under the program-adaptive schema.
Technical Paper

An Innovative I-Bumper Concept for Improved Crashworthiness of Military and Commercial Vehicles

2008-04-14
2008-01-0512
The greatest demand facing the automotive industry has been to provide safer vehicles with high fuel efficiency at minimum cost. Current automotive vehicle structures have one fundamental handicap: a short crumple zone for crash energy absorption. This leaves limited room for further safety improvement, especially for high-speed crashes. Breakthrough technologies are needed. One potential breakthrough is to use active devices instead of conventional passive devices. An innovative inflatable bumper concept [1], called the “I-bumper,” is being developed by the authors for crashworthiness and safety of military and commercial vehicles. The proposed I-bumper has several active structural components, including a morphing mechanism, a movable bumper, two explosive airbags, and a morphing lattice structure with a locking mechanism that provides desired rigidity and energy absorption capability during a vehicular crash.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

A Market-Weighted Description of Low-Beam Headlighting Patterns in Europe

2001-03-05
2001-01-0857
This study was designed to provide photometric information about current European low-beam headlamps. The sample included 20 low-beam headlamps manufactured for use on the 20 best-selling passenger vehicles for calendar year 1999 in 17 European countries. These 20 vehicles represent 47% of all vehicles sold in these countries. The lamps were purchased directly from vehicle dealerships, and photometered in 0.25° steps from 45° left to 45° right, and from 5° down to 7° up. The photometric information for each lamp was weighted by 1999 sales figures for the corresponding vehicle. The results are presented both in tabular form for the 25th-percentile, the median (50th-percentile), and the 75th-percentile luminous intensities, as well as in graphical form (for the median luminous intensities).
Technical Paper

Multi-Zone DI Diesel Spray Combustion Model for Cycle Simulation Studies of Engine Performance and Emissions

2001-03-05
2001-01-1246
A quasi-dimensional, multi-zone, direct injection (DI) diesel combustion model has been developed and implemented in a full cycle simulation of a turbocharged engine. The combustion model accounts for transient fuel spray evolution, fuel-air mixing, ignition, combustion and NO and soot pollutant formation. In the model, the fuel spray is divided into a number of zones, which are treated as open systems. While mass and energy equations are solved for each zone, a simplified momentum conservation equation is used to calculate the amount of air entrained into each zone. Details of the DI spray, combustion model and its implementation into the cycle simulation of Assanis and Heywood [1] are described in this paper. The model is validated with experimental data obtained in a constant volume chamber and engines. First, predictions of spray penetration and spray angle are validated against measurements in a pressurized constant volume chamber.
Technical Paper

Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies

2001-03-05
2001-01-1334
A hybrid electric vehicle simulation tool (HE-VESIM) has been developed at the Automotive Research Center of the University of Michigan to study the fuel economy potential of hybrid military/civilian trucks. In this paper, the fundamental architecture of the feed-forward parallel hybrid-electric vehicle system is described, together with dynamic equations and basic features of sub-system modules. Two vehicle-level power management control algorithms are assessed, a rule-based algorithm, which mainly explores engine efficiency in an intuitive manner, and a dynamic-programming optimization algorithm. Simulation results over the urban driving cycle demonstrate the potential of the selected hybrid system to significantly improve vehicle fuel economy, the improvement being greater when the dynamic-programming power management algorithm is applied.
Technical Paper

Prediction of Head Orientation based on the Visual Image of a Three Dimensional Space

2001-06-26
2001-01-2092
Head movements contribute to the acquisition of targets in visually guided tasks such as reaching and grasping. It has been found that head orientation is generally related to the spatial location of the visual target. The movements of the head in a three-dimensional space are described using six degrees of freedom including translations along x-, y- and z-axis plus rotations about x-, y- and z-axis. While the control of head movement is heavily dependent upon visual perception, head movements lead to a change in the visual perception of the task space as well. In the present study we analyzed head movements in a set of driving simulation experiments. Also a theoretical reconstruction of the perceived task space after head movements was modeled by a statistical regression. This process included the transformation of the task space from a global reference frame (earth-fixed) into a perceived space in a head-centered reference frame (head-fixed).
Technical Paper

Assessing the Fuel Economy Potential of Light-Duty Vehicles

2001-08-20
2001-01-2482
This paper assesses the potential for car and light truck fuel economy improvements by 2010-15. We examine a range of refinements to body systems and powertrain, reflecting current best practice as well as emerging technologies such as advanced engine and transmission, lightweight materials, integrated starter-generators, and hybrid drive. Engine options are restricted to those already known to meet upcoming California emissions standards. Our approach is to apply a state-of-art vehicle system simulation model to assess vehicle fuel economy gains and performance levels. We select a set of baseline vehicles representing five major classes - Small and Standard Cars, Pickup Trucks, SUVs and Minivans - and analyze design changes likely to be commercially viable within the coming decade. Results vary by vehicle type.
Technical Paper

A Universal Heat Transfer Correlation for Intake and Exhaust Flows in an Spark-Ignition Internal Combustion Engine

2002-03-04
2002-01-0372
In this paper, the available correlations proposed in the literature for the gas-side heat transfer in the intake and exhaust system of a spark-ignition internal combustion engine were surveyed. It was noticed that these only by empirically fitted constants. This similarity provided the impetus for the authors to explore if a universal correlation could be developed. Based on a scaling approach using microscales of turbulence, the authors have fixed the exponential factor on the Reynolds number and thus reduced the number of adjustable coefficients to just one; the latter can be determined from a least squares curve-fit of available experimental data. Using intake and exhaust side data, it was shown that the universal correlation The correlation coefficient of this proposed heat transfer model with all available experimental data is 0.845 for the intake side and 0.800 for the exhaust side.
Technical Paper

Plane-Strain Tension Tests of Al 2008-T4 Sheets

1993-03-01
930812
Rectangular aluminum sheets were stretched under in-plane plane-strain tension using a simple experimental setup. The samples can be stretched under these conditions until localized necking occurs at the centerline. The strain distributions and the loads were recorded at different strain levels. Good agreement was found between actual loads and those calculated from strain measurements assuming isotropic hardening with a high exponent yield criterion.
Technical Paper

Framing Effects on Distance Perception in Rear-Vision Displays

2003-03-03
2003-01-0298
The increasing availability of camera-based displays for indirect vision in vehicles is providing new opportunities to supplement drivers' direct views of the roadway and surrounding traffic, and is also raising new issues about how drivers perceive the positions and movements of surrounding vehicles. We recently reported evidence that drivers' perception of the distance to rearward vehicles seen in camera-based displays is affected not only by the visual angles subtended by the images of those vehicles, but also by the sizes of those images relative to the sizes of the displays within which they are seen (an influence that we have referred to as a framing effect). There was also evidence for a similar, but weaker, effect with rearview mirrors.
Technical Paper

A Pilot Study of the Effects of Vertical Ride Motion on Reach Kinematics

2003-03-03
2003-01-0589
Vehicle motions can adversely affect the ability of a driver or occupant to quickly and accurately push control buttons located in many advanced vehicle control, navigation and communications systems. A pilot study was conducted using the U.S. Army Tank Automotive and Armaments Command (TACOM) Ride Motion Simulator (RMS) to assess the effects of vertical ride motion on the kinematics of reaching. The RMS was programmed to produce 0.5 g and 0.8 g peak-to-peak sinusoidal inputs at the seat-sitter interface over a range of frequencies. Two participants performed seated reaching tasks to locations typical of in-vehicle controls under static conditions and with single-frequency inputs between 0 and 10 Hz. The participants also held terminal reach postures during 0.5 to 32 Hz sine sweeps. Reach kinematics were recorded using a 10-camera VICON motion capture system. The effects of vertical ride motion on movement time, accuracy, and subjective responses were assessed.
Technical Paper

Friction Measurement in the Valve Train with a Roller Follower

1994-03-01
940589
The valve train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod forces, and cam speed. Results are presented for one exhaust valve of a motored Cummins L-10 engine. The instantaneous cam/roller friction force was determined from the instantaneous roller speed and the pin friction torque. The pushrod force and displacement were also measured. Friction work loss was determined for both cam and roller interface as well as the upper valve train which includes the valve pushrod, rocker arm, valve guide, and valve. Roller follower slippage on the cam was also determined. A kinematic analysis with the measured data provided the normal force and contact stress at cam/roller interface.(1) Finally, the valve train friction was found to be in the mixed lubrication regime.(2) Further efforts will address the theoretical analysis of valve train friction to predict roller slippage.
Technical Paper

Hydrocarbon Emission Sequence Related to Cylinder Mal-Distribution in a L-Head Engine

1994-03-01
940305
The distribution of fuel-air mixtures in many L-head engines is not homogeneous. If local mixture is too rich or lean, incomplete combustion occurs. This can play a major role in unburned hydrocarbon and carbon monoxide emissions. Fuel-air mixture distribution depends on in-cylinder swirl and turbulence and is directly related to intake manifold configuration, fuel delivery system design and combustion chamber shape. Understanding the spatial mixture distribution may help improve the design of these aforementioned components. Consequently, a more complete combustion process may result, and emissions reduced. A method that measures the emission of CH and C2 radicals via the use of an optical fiber bundle was used in this research to map the mixture uniformity in the combustion chamber. The intensity ratio (IC2/ICH) was correlated to the fuel-air equivalence ratio. The mixture distribution measured was then correlated with the hydrocarbon emission sequence.
Technical Paper

Helmholtz Resonator: A Multidimensional Analytical, Computational, and Experimental Study

1995-05-01
951263
Helmholtz resonators are widely used for noise reduction in vehicle induction and exhaust systems. This study investigates the effect of specific cavity dimensions of these resonators theoretically, computationaly, and experimentally. An analytical model is developed for circular concentric resonators to account for the multidimensional wave propagation in both the neck and the cavity. Driving this model with an oscillating piston isolates the interface between the neck and the resonator volume, thereby allowing, at this location, for an accurate evaluation of the empirical end correction, which is often used with the classical lumped approach in an attempt to incorporate the effect of multidimensional behavior at the transitions. The analytical method developed in the study is then compared with a similar one-dimensional analytical model that also allows for wave propagation in the neck and cavity.
X