Refine Your Search

Topic

Search Results

Journal Article

Non-Intrusive Methodology for Estimation of Speed Fluctuations in Automotive Turbochargers under Unsteady Flow Conditions

2014-04-01
2014-01-1645
The optimization of turbocharging systems for automotive applications has become crucial in order to increase engine performance and meet the requirements for pollutant emissions and fuel consumption reduction. Unfortunately, performing an optimal turbocharging system control is very difficult, mainly due to the fact that the flow through compressor and turbine is highly unsteady, while only steady flow maps are usually provided by the manufacturer. For these reasons, one of the most important quantities to be used onboard for optimal turbocharger system control is the rotational speed fluctuation, since it provides information both on turbocharger operating point and on the energy of the unsteady flow in the intake and exhaust circuits. This work presents a methodology that allows determining the instantaneous turbocharger rotational speed through a proper frequency processing of the signal coming from one accelerometer mounted on the turbocharger compressor.
Journal Article

Diesel Exhaust Fluid (DEF) Supply System Modelling for Control and Diagnosis Applications

2015-01-14
2015-26-0090
The Selective Catalytic Reduction (SCR) system installed on the exhaust line is currently widely used on Diesel heavy-duty trucks and it is considered a promising technique for light and medium duty trucks, large passenger cars and off-highway vehicles, to fulfill future emission legislation. Some vehicles of these last categories, equipped with SCR, have been already put on the market, not only in the US, where the emission legislation on Diesel vehicles is more restrictive, but also in Europe, demonstrating to be already compliant with the upcoming Euro 6. Moreover, new and more stringent emission regulations and homologation cycles are being proposed all over the world, with a consequent rapidly increasing interest for this technology. As a matter of fact, a physical model of the Diesel Exhaust Fluid (DEF) supply system is very useful, not only during the product development phase, but also for the implementation of the on-board real-time controller.
Journal Article

Acoustic Emission Processing for Turbocharged GDI Engine Control Applications

2015-04-14
2015-01-1622
In the field of passenger car engines, recent research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting particularly stringent exhaust emissions limits. Knock and turbocharger control are two of the most critical factors that influence the achievement of maximum efficiency and satisfactory drivability, for this new generation of engines. The sound emitted from an engine encloses many information related to its operating condition. In particular, the turbocharger whistle and the knock clink are unmistakable sounds. This paper presents the development of real-time control functions, based on direct measurement of the engine acoustic emission, captured by an innovative and low cost acoustic sensor, implemented on a platform suitable for on-board application.
Journal Article

Technology Comparison for Spark Ignition Engines of New Generation

2017-09-04
2017-24-0151
New gasoline engine design is highly influenced by CO2 and emission limits defined by legislations, the demand for real conditions fuel economy, higher torque, higher specific power and lower cost. To reach the requirements coming from the end-users and legislations, especially for SI engines, several technologies are available, such as downsizing, including turbocharging in combination with direct injection. These technologies allow to solve the main issues of gasoline engines in terms of efficiency and performance which are knocking, part-load losses, and thermal stress at high power conditions. Moreover, other possibilities are under evaluation to allow further steps of enhancement for the even more challenging requirements. However, the benefits and costs given by the mix of these technologies must be accurately evaluated by means of objective tools and procedures in order to choose among the best alternatives.
Journal Article

Innovative Techniques for On-Board Exhaust Gas Dynamic Properties Measurement

2013-04-08
2013-01-0305
The purpose of this paper is to present some innovative techniques developed for an unconventional utilization of currently standard exhaust sensors, such as HEGO, UEGO, and NOx probes. In order to comply with always more stringent legislation about pollutant emissions, intake-exhaust systems are becoming even more complex and sophisticated, especially for CI engines, often including one or two UEGO sensors and a NOx sensor, and potentially equipped with both short-route and long-route EGR. Within this context, the effort to carry out novel methods for measuring the main exhaust gas dynamic properties exploiting sensors installed for different purposes, could be useful both for control applications, such as EGR rates estimation, or cost reduction, minimizing the on-board devices number. In this work, a gray-box model for measuring the gas mass flow rate, based on standard NOx sensor operating parameters of its heating circuit, is analyzed.
Journal Article

Real-Time Estimation of Intake O2 Concentration in Turbocharged Common-Rail Diesel Engines

2013-04-08
2013-01-0343
Automotive engines and control systems are more and more sophisticated due to increasingly restrictive environmental regulations. Particularly in both diesel and SI lean-burn engines NOx emissions are the key pollutants to deal with and sophisticated Engine Management System (EMS) strategies and after-treatment devices have to be applied. In this context, the in-cylinder oxygen mass fraction plays a key-role due its direct influence on the NOx formation mechanism. Real-time estimation of the intake O₂ charge enhances the NOx prediction during engine transients, suitable for both dynamic adjustments of EMS strategies and management of aftertreatment devices. The paper focuses on the development and experimental validation of a real-time estimator of O₂ concentration in the intake manifold of an automotive common-rail diesel engine, equipped with turbocharger and EGR system.
Journal Article

Modeling Analysis of Waste Heat Recovery via Thermo Electric Generators for Fuel Economy Improvement and CO2 Reduction in Small Diesel Engines

2014-04-01
2014-01-0663
This paper deals with modeling and analysis of the integration of ThermoElectric generators (TEG) into a conventional vehicle, specifically aimed at recovering waste heat from exhaust gases. The model is based on existing and commercial thermoelectric materials, specifically Bi2Te3, having ZTs not exceeding 1 and efficiency below 5%, but a trade-off between cost and performance that would be acceptable for automotive applications. TEGs operate on the principle of thermoelectric energy conversion via Seebeck effect, utilizing thermal gradients to generate electric current, with exhaust gases at the hot side and coolant at the cold side. In the simulated configuration the TEG converters are interfaced with the battery/alternator supporting the operation of the vehicle, reducing the energy consumption due to electrical accessories and HVAC.
Technical Paper

Common Rail Multi-Jet Diesel Engine Combustion Model Development for Control Purposes

2007-04-16
2007-01-0383
Multi-jet injection strategies open significant opportunities for the combustion management of the modern diesel engine. Splitting up the injection process into 5 steps facilitates the proper design of the combustion phase in order to obtain the desired torque level, whilst attempting a reduction in emissions, particularly in terms of NOx. Complex 3-D models are needed in the design stage, where components such as the injector or combustion chamber shape have to be determined. Alternatively, zero-dimensional approaches are more useful when fast interpretation of experimental data is needed and an optimization of the combustion process should be obtained based on actual data. For example, zero-dimensional models allow a quick choice of optimum control settings for each engine operating condition, avoiding the need to test all the possible combinations of engine control parameters.
Technical Paper

A detailed Mean Value Model of the exhaust system of an automotive Diesel engine

2008-01-09
2008-28-0027
Theoretical models are useful tools in the design of engine control systems, with applications that range from the design of engine layout, the definition of optimised management systems, to hardware-in-the-loop testing (HiL) and to model-based control strategies. To define theoretical models for control-oriented applications, an original library has been built up at the University of Parma for the simulation of the intake and exhaust systems of automotive turbocharged engines. Starting from this library, a Mean Value Model (MVM) of a Diesel engine, with variable-geometry turbocharger (VGT), EGR and throttle valve, has been developed for a small automotive application. In the paper the matching of the engine model with a detailed model of the exhaust system (developed by Magneti Marelli Powertrain) is presented.
Technical Paper

A thermodynamic Mean Value Model of the intake and exhaust system of a turbocharged engine for HiL/SiL applications.

2009-09-13
2009-24-0121
Regarding automotive applications, Internal Combustion Engines (ICE) have become very complex plants to comply with present and future requirements in reduction of fuel consumption, pollutant emissions and performance improvement. As a consequence, the development of engine control and diagnostic system is a key aspect in the powertrain design. Mathematical models are useful tools in this direction, with applications that range from the definition of optimised management systems, to Hardware- and Software-in-the-Loop testing (HiL and SiL) and to modelbased control strategies. To this extent an original library has been developed by the authors for the simulation of last generation automotive engines. Library blocks were used to assembly a sub-model of the typical intake and exhaust system of a turbocharged engine (with VGT, intercooler, EGR circuit with cooler and throttle).
Technical Paper

A Mean Value Model of the Exhaust System with SCR for an Automotive Diesel Engine

2009-09-13
2009-24-0131
Nowadays requirements towards a reduction in fuel consumption and pollutant emissions of Internal Combustion Engines (ICE) keep on pushing manufacturers to improve engines performance through the enhancement of existing subsystems (e.g.: electronic fuel injection, air systems) and the introduction of specific devices (e.g.: exhaust gas recirculation systems, SCR, …). Modern systems require a combined design and application of different after-treatment devices. Mathematical models are useful tools to investigate the complexity of different system layouts, to design and to validate (HIL/SIL testing) control strategies for the after-treatment management. This study presents a mean value model of an exhaust system with SCR; it has been coupled with a common rail diesel engine combustion black box model (Neural Network based). So, dedicated models for exhaust pipes, oxidation catalyst, diesel particulate filter and selective catalytic converter are developed.
Technical Paper

Assessment of Port Water Injection Strategies to Control Knock in a GDI Engine through Multi-Cycle CFD Simulations

2017-09-04
2017-24-0034
Water injection in highly boosted gasoline direct injection (GDI) engines has become an attractive area over the last few years as a way of increasing efficiency, enhancing performance and reducing emissions. The technology and its effects are not new, but current gasoline engine trends for passenger vehicles have several motivations for adopting this technology today. Water injection enables higher compression ratios, optimal spark timing and elimination of fuel enrichment at high load, and possibly replacement of EGR. Physically, water reduces charge temperature by evaporation, dilutes combustion, and varies the specific heat ratio of the working fluid, with complex effects. Several of these mutually intertwined aspects are investigated in this paper through computational fluid dynamics (CFD) simulations, focusing on a turbo-charged GDI engine with port water injection (PWI). Different strategies for water injection timing, pressure and spray targeting are investigated.
Technical Paper

Development and Validation of a Methodology for Real-Time Evaluation of Cylinder by Cylinder Torque Production Non-Uniformities

2011-09-11
2011-24-0145
Modern internal combustion engine control systems require on-board evaluation of a large number of quantities, in order to perform an efficient combustion control. The importance of optimal combustion control is mainly related to the requests for pollutant emissions reduction, but it is also crucial for noise, vibrations and harshness reduction. Engine system aging can cause significant differences between each cylinder combustion process and, consequently, an increase in vibrations and pollutant emissions. Another aspect worth mentioning is that newly developed low temperature combustion strategies (such as HCCI combustion) deliver the advantage of low engine-out NOx emissions, however, they show a high cylinder-to-cylinder variation. For these reasons, non uniformity in torque produced by the cylinders in an internal combustion engine is a very important parameter to be evaluated on board.
Technical Paper

Knock Control Based on Engine Acoustic Emissions: Calibration and Implementation in an Engine Control Unit

2017-03-28
2017-01-0785
In modern turbocharged downsized GDI engines the achievement of maximum thermal efficiency is precluded by the occurrence of knock. In-cylinder pressure sensors give the best performance in terms of abnormal combustion detection, but they are affected by long term reliability issues and still constitute a considerable part of the entire engine management system cost. To overcome these problems, knock control strategies based on engine block vibrations or ionization current signals have been developed and are widely used in production control units. Furthermore, previous works have shown that engine sound emissions can be real-time processed to provide the engine management system with control-related information such as turbocharger rotational speed and knock intensity, demonstrating the possibility of using a multi-function device to replace several sensors.
Technical Paper

Application of Acoustic and Vibration-Based Knock Detection Techniques to a High Speed Engine

2017-03-28
2017-01-0786
Knock control systems based on engine block vibrations analysis are widely adopted in passenger car engines, but such approach shows its main limits at high engine speeds, since knock intensity measurement becomes less reliable due to the increased background mechanical noise. For small two wheelers engines, knock has not been historically considered a crucial issue, mainly due to small-sized combustion chambers and mixture enrichment. Due to more stringent emission regulations and in search of reduced CO2 emissions, an effective on-board knock controller acquires today greater importance also for motorcycle applications, since it could protect the engine when different fuel types are used, and it could significantly reduce fuel consumption (by avoiding lambda enrichment and/or allowing higher compression ratios to be adopted). These types of engines typically work at high rotational speeds and the reduced signal to noise ratio makes knock onset difficult to identify.
Technical Paper

Remote Sensing Methodology for the Closed-Loop Control of RCCI Dual Fuel Combustion

2018-04-03
2018-01-0253
The continuous development of modern Internal Combustion Engine (ICE) management systems is mainly aimed at complying with upcoming increasingly stringent regulations throughout the world. Performing an efficient combustion control is crucial for efficiency increase and pollutant emissions reduction. These aspects are even more crucial for innovative Low Temperature Combustions (such as RCCI), mainly due to the high instability and the high sensitivity to slight variations of the injection parameters that characterize this kind of combustion. Optimal combustion control can be achieved through a proper closed-loop control of the injection parameters. The most important feedback quantities used for combustion control are engine load (Indicated Mean Effective Pressure or Torque delivered by the engine) and center of combustion (CA50), i.e. the angular position in which 50% of fuel burned within the engine cycle is reached.
Technical Paper

UEGO-based Exhaust Gas Mass Flow Rate Measurement

2012-09-10
2012-01-1627
New and upcoming exhaust emissions regulations and fuel consumption reduction requirements are forcing the development of innovative and particularly complex intake-engine-exhaust layouts. Especially in the case of Compression Ignition (CI) engines, the HC-CO-NOx-PM after-treatment system is becoming extremely expensive and sophisticated, and the necessity to further reduce engine-out emission levels, without significantly penalizing fuel consumption figures, may lead to the adoption of intricate and challenging intake-exhaust systems configurations. The adoption of both long- and short-route Exhaust Gas Recirculation (EGR) systems is one example of such situation, and the need to precisely measure (or estimate) mass flow rates in the various elements of the gas exchange circuit is one of the consequences.
Technical Paper

Development of an Urea Supply System for the SCR Catalyst

2013-01-09
2013-26-0047
The increase in the fuel price and more stringent regulations on greenhouse gases (CO2) make the engine compression ignition technology even more attractive in the context of internal combustion engines. This is because the modern turbocharged direct injection engines, with the common rail fuel system, are characterized by high combustion efficiency and power density, that make them particularly suitable both for applications on and off road. On the other hand, the compression ignition engines are subject to a heavy technological developments to meet the more stringent regulations on emissions of exhaust pollutants, especially PM and NOx. The adopted technologies have two main approaches, on the combustion and on the exhaust gas aftertreatment. The measures applied for combustion can reduce emissions, but with the risk of penalizing the other engine performances, such as noise, power output and fuel consumption.
Technical Paper

A Methodology to Enhance Design and On-Board Application of Neural Network Models for Virtual Sensing of Nox Emissions in Automotive Diesel Engines

2013-09-08
2013-24-0138
The paper describes suited methodologies for developing Recurrent Neural Networks (RNN) aimed at estimating NOx emissions at the exhaust of automotive Diesel engines. The proposed methodologies particularly aim at meeting the conflicting needs of feasible on-board implementation of advanced virtual sensors, such as neural network, and satisfactory prediction accuracy. Suited identification procedures and experimental tests were developed to improve RNN precision and generalization in predicting engine NOx emissions during transient operation. NOx measurements were accomplished by a fast response analyzer on a production automotive Diesel engine at the test bench. Proper post-processing of available experiments was performed to provide the identification procedure with the most exhaustive information content. The comparison between experimental results and predicted NOx values on several engine transients, exhibits high level of accuracy.
Technical Paper

Thermal Management Strategies for SCR After Treatment Systems

2013-09-08
2013-24-0153
While the Diesel Particulate Filter (DPF) is actually a quasi-standard equipment in the European Diesel passenger cars market, an interesting solution to fulfill NOx emission limits for the next EU 6 legislation is the application of a Selective Catalytic Reduction (SCR) system on the exhaust line, to drastically reduce NOx emissions. In this context, one of the main issues is the performance of the SCR system during cold start and warm up phases of the engine. The exhaust temperature is too low to allow thermal activation of the reactor and, consequently, to promote high conversion efficiency and significant NOx concentration reduction. This is increasingly evident the smaller the engine displacement, because of its lower exhaust system temperature (reduced gross power while producing the same net power, i.e., higher efficiency).
X