Refine Your Search

Search Results

Journal Article

Miller-PCCI Combustion in an HSDI Diesel Engine with VVT

2008-04-14
2008-01-0644
A variable valve timing (VVT) mechanism has been applied in a high-speed direct injection (HSDI) diesel engine. The effective compression ratio (εeff) was lowered by means of late intake valve closing (LIVC), while keeping the expansion ratio constant. Premixed charge compression ignition (PCCI) combustion, adopting the Miller-cycle, was experimentally realized and numerically analyzed. Significant improvements of NOx and soot emissions were achieved for a wide range of engine speeds and loads, frequently used in a transient mode test. The operating range of the Miller-PCCI combustion has been expanded up to an IMEP of 1.30 MPa.
Technical Paper

Evaluation of Regulated Materials and Ultra Fine Particle Emission from Trial Production of Heavy-Duty CNG Engine

2006-10-16
2006-01-3397
A prototype CNG engine for heavy-duty trucks has been developed. The engine had sufficient output in practical use, and the green-house gas emission rate was below that of the base diesel engine. Furthermore, the NOx emission rate was reduced to 0.16 g/kWh in the JE05 mode as results of having fully adjusted air fuel ratio control. The measured emission characteristics of particles from the prototype CNG engine demonstrated that oil consumption was related to the number of particles. Moreover, when oil consumption is at an appropriate level, the accumulation mode particles are significantly reduced, and the nuclei mode particles are fewer than those of diesel-fueled engines.
Technical Paper

Formation Process of Soot Precursors in a Laminar Flow Reactor

2007-01-23
2007-01-0061
The Poly-Aromatic Hydrocarbon (PAH) formation process from benzene was studied using a laminar flow reactor and GC-MS. In addition to PAH, acetylene and ethylene were observed. Without oxygen at temperatures over 1070 K, the amount of PAH and C2 species increased as the benzene concentration decreased. Addition of oxygen caused a linear decrease in the benzene concentration, and almost all of the benzene was consumed under stoichiometric conditions at all temperatures. At 1053 K, the concentrations of PAH and C2 species were not affected by the addition of oxygen. On the other hand, when the temperature was greater than 1070 K, the amount of PAH formed increased as the equivalence ratio increased, until the equivalence ratio was about 4. Above this equivalence ratio, the amounts decreased. Amounts of phenanthrene and biphenyl were large compared to those of other PAHs, which indicated that the dominant PAH formation path is the formation of phenanthrene via biphenyl.
Technical Paper

Real-Time and Direct Measurement of Pollutants in Exhaust Gas Utilizing Supersonic Jet / Resonance Enhanced Multi-Photon Ionization

2008-04-14
2008-01-0761
Supersonic jet / resonance enhanced multi-photon ionization (Jet-REMPI) technique was focused on the analyzing method for gas mixture like exhaust gas from automobiles. In this method, when the mass number and wavelength of excitation laser are determined adequately, the target compound can be monitored selectively. We developed a new analyzer utilizing REMPI method. Using this analyzer, real-time monitoring of exhaust gas from a motorcycle and diesel vehicles was conducted. As a result of real-time monitoring test of the vehicles, concentrations of aromatic compounds like benzene toluene etc. were quantified and real-time changes of their concentrations were observed.
Technical Paper

Real-time Analysis of Benzene in Exhaust Gas from Driving Automobiles Using Jet-REMPI Method

2009-11-02
2009-01-2740
Real-time analysis of benzene in automobile exhaust gas was performed using the Jet-REMPI (supersonic jet / resonance enhanced multi-photon ionization) method. Real-time benzene concentration of two diesel trucks and one gasoline vehicle driving in Japanese driving modes were observed under ppm level at 1 s intervals. As a result, it became obvious that there were many differences in their emission tendencies, because of their car types, driving conditions, and catalyst conditions. In two diesel vehicle, benzene emission tendencies were opposite. And, in a gasoline vehicle, emission pattern were different between hot and cold conditions due to the catalyst conditions.
Technical Paper

Mixture Formation and Auto-Ignition Behavior of Pure and Mixed Normal Paraffin Fuels

2003-10-27
2003-01-3096
Fuel formulation for premixed charge compression ignition (PCCI) combustion has been attempted based on the mixture formation and auto-ignition behavior of normal paraffin fuels. Different pure and mixed fuels with different blending ratios are tested. The mixture formation behavior is investigated photographically in a constant volume combustion chamber (CVCC) at elevated temperature and pressure. Auto-ignition behavior is tested in a Fuel Ignition Analyzer under different test conditions. It is found that the evaporation rate of pure n-paraffin fuel increases and the ignition delay becomes longer with decreases in the chain length. In the range of test condition used in this study, the flash-boiling phenomenon affects the fuel evaporation rate and ignition delay to some extent. Based on the experimental results a mixture of a very light mixture promoting component (MPC) and a moderately dense igniting component (IC) at a ratio of 3:1 is found to be optimum for PCCI combustion.
Technical Paper

Influence of Dilution Process on Engine Exhaust Nano-Particles

2004-03-08
2004-01-0963
Recently, particulate matter (PM) emission from internal combustion engines, especially particles having the diameter of less than 100 nm (Nano-particles) are being considered for their potential hazards posed to human health and the environment. Nano-particles are unstable and easily influenced by the conditions of engine operation and measurement techniques. In this study, the influences of cooling and dilution processes on nano- particles are presented to understand the generation and dilution mechanisms, and to further development of an accurate measurement method. It is found that the thermo-dilurter is necessary for measuring the nano-particles with higher accuracy. Accurate measurement of nano-particles requires immediate dilution of the exhaust gases by hot air.
Technical Paper

Combustion Improvement and Exhaust Emissions_Characteristics in a Direct Injection Natural Gas Engine by Throttling and Exhaust Gas Recirculation

2001-03-05
2001-01-0737
A natural gas direct injection test engine equipped with a newly developed natural gas injector was built. High total hydrocarbon (THC) emission at part-load and high NOx emission at high-load remain as problems for direct injection natural gas engines. THC reduction and combustion improvement by throttling and NOx reduction by EGR were investigated. The following results were obtained: (1) the combustion at light and medium load conditions is improved by throttling. It is possible to improve the thermal efficiency at light-load in spite of the pumping loss by throttling. THC emissions are greatly decreased in this condition; (2) a large NOx reduction can be obtained without combustion deterioration by appropriate EGR at high-load conditions; and (3) it is possible to decrease both THC and NOx emissions by both throttling and EGR at part-load conditions.
Technical Paper

Effects of Fuel Properties on Combustion and Exhaust Emissions of Homogeneous Charge Compression Ignition (HCCI) Engine

2004-06-08
2004-01-1966
Homogeneous Charge Compression Ignition (HCCI) is effective for the simultaneous reduction of soot and NOx emissions from diesel engine. In general, high octane number and volatility fuels (gasoline components or gaseous fuels) are used for HCCI operation, because very lean mixture must be formed during ignition delay of the fuel. However, it is necessary to improve fuel injection systems, when these fuels are used in diesel engine. The purpose of the present study is the achievement of HCCI combustion in DI diesel engine without the large-scale improvements of engine components. Various high octane number fuels are mixed with diesel fuel as a base fuel, and the mixed fuels are directly applied to DI diesel engine. At first, the cylinder pressure and heat release rate of each mixed fuel are analyzed. The ignition delay of HCCI operation decreases with an increase in the operation load, although that of conventional diesel operation does not almost varied.
Technical Paper

A New Type Partial Flow Dilution Tunnel with Geometrical Partitioning for Diesel Particulate Measurement

2001-09-24
2001-01-3579
The authors have developed a new partial flow dilution tunnel (hereafter referred to as PPFT), whose principal device is a flux splitting gas divider, as a new means of measuring particulate emissions which can be applied to transient cycle testing of diesel engines. The advantage of this system is that it can achieve perfect constant velocity splitting by means of its structure, and theoretically can also maintain high splitting performance despite fluctuations in the exhaust flow rate, including those due to engine exhaust pulsation. We compared this system with a full tunnel by analyzing the basic performance of the system and measuring particulate matter (PM) using an actual vehicle engine.
Technical Paper

The Influence of Fuel Components on PM and PAH Exhaust Emissions from a DI Diesel Engine - Effects of Pyrene and Sulfur Contents-

2001-09-24
2001-01-3693
Particulate matter (PM) and polynuclear aromatic hydrocarbons (PAH) were measured under steady state engine operating conditions in the exhaust of a DI diesel engine that meets the Japanese 1994 heavy-duty vehicle standards. In this study, to examine and discuss the effects of pyrene and sulfur contents in fuels on PM and PAH emissions, experiments were performed using both ordinary diesel fuel and a specified fuel having simple hydrocarbon components and very few aromatics. In the experiments, pyrene and sulfur contents in the fuels were changed by the addition of reagents to the fuel. The following conclusions were obtained. (1) From the experiments using ordinary JIS No. 2 diesel fuel with a pyrene reagent added to yield 400ppm pyrene, it was found that pyrene addition brings about an increase in soluble organic fraction (SOF) under low load engine operating conditions.
Technical Paper

Effect of Boiling Point Differences of Two-Component Normal Paraffin Fuels on Combustion and Emission in CI Engines

2003-03-03
2003-01-0757
The effect of boiling point difference as well as the flash boiling of two-component normal paraffin fuels on combustion and exhaust emission has been examined under different test conditions. To obtain a wide variation in boiling point between components different high boiling point fuels (n-undecane, n-tridecane and n-hexadecane) were blended with a low boiling point fuel (n-pentane) and different low boiling point fuels (n-pentane, n-hexane, and n-heptane) were blended with a high boiling point fuel (n-hexadecane). In addition the volume fraction of n-pentane was varied to have the best mixture ratio with n-tridecane. These fuel combinations exhibit different potential for flash boiling based on a certain ambient condition. The results indicate that though the potential for flash boiling is the highest for a mixture of n-pentane and n-hexadecane it emits about 20% higher PM than a mixture of n-pentane and n-tridecane.
Technical Paper

Influence of Thermo-Denuder Dimensions on Nano-particle Measurement

2003-05-19
2003-01-2018
The use of a Thermo-Denuder (TD) is proposed to suppress the nano-particle measurement fluctuations caused by the volatile components in the available techniques. The problems encountered during the use of thermo-denuder for nano-particle measurement and their respective solutions are suggested. The behavior of nano-particles in the TD itself is not clearly understood but the thermo-denuder influences both the volatile and solid particles. As a first report, only the effect of TD dimension on solid nano-particle measurements is presented. It is concluded that the TD influences the nano-particles i.e. loss of particles occurs even the sample gas contains no volatile fractions. A sharp temperature gradient between the low temperature wall of the absorption part of TD and hot sample gas causes particle losses due to thermophoresis effect. Especially the smaller particles are affected significantly.
Technical Paper

Numerical Simulation of Multicomponent Fuel Spray

2003-05-19
2003-01-1838
Fuel design for internal combustion engines has been proposed in our study. In this concept, the multicomponent fuel with high and low volatility fuels are used in order to control the spray and combustion processes in internal combustion engine. Therefore, it is necessary to understand the spray and combustion characteristics of the multicomponent fuels in detail. In the present study, the modeling of multicomponent spray vaporization was conducted using KIVA3V code. The physical fuel properties of multicomponent fuel were estimated using the source code of NIST Mixture Property Database. Peng-Robinson equation of state and fugacity calculation were applied to the estimation of liquid-vapor equilibrium in order to take account for non-ideal vaporization process. Two-zone model in which fuel droplet was divided into droplet surface and inner core was introduced in order to simply consider the temperature distribution in fuel droplet.
Technical Paper

Study on Regeneration of Diesel Particle Trapper by Electrical Self-Heating Type Filter

1992-02-01
920140
The cordierite filter has been widely studied because of it's inherent, high capacities in the collection efficiency and heat-resistance. During the regeneration process of a cordierite filter, failure of ignition or incomplete burning propagation occurs, and additionally melts or cracks develop sometimes. In this study, the problems stated above are considered from a new standpoint, and a regeneration method that does not strictly depend on accumulated soot quantity is discussed. A filter made of SiC (Silicon carbide) possesses the requisite electric resistance and it's possible to heat it uniformly by using electricity. Accumulated soot can be uniformly incinerated not by burning propagation but by simultaneous ignition and burning of all accumulated soot. Silicon carbide has a higher resistance to heat than cordierite. Therefore, a self-heating filter made of SiC makes it possible to regenerate the filter in a wider range of accumulated soot.
Technical Paper

Degradation of DeNOx Performance of a Urea-SCR System in In-Use Heavy-Duty Vehicles Complying with the New Long-Term Regulation in Japan and Estimation of its Mechanism

2016-04-05
2016-01-0958
Degradation of the deNOx performance has been found in in-use heavy-duty vehicles with a urea-SCR system in Japan. The causes of the degradation were studied, and two major reasons are suggested here: HC poisoning and deactivation of pre-oxidation catalysts. Hydrocarbons that accumulated on the catalysts inhibited the catalysis. Although they were easily removed by a simple heat treatment, the treatment could only partially recover the original catalytic performance for the deNOx reaction. The unrecovered catalytic activity was found to result from the decrease in conversion of NO to NO2 on the pre-oxidation catalyst. The pre-oxidation catalyst was thus studied in detail by various techniques to reveal the causes of the degradation: Exhaust emission tests for in-use vehicles, effect of heat treatment on the urea-SCR systems, structural changes and chemical changes in active components during the deactivation were systematically investigated.
Technical Paper

Advanced Diesel Combustion Using of Wide Range, High Boosted and Cooled EGR System by Single Cylinder Engine

2006-04-03
2006-01-0077
For reducing exhaust emissions of heavy-duty diesel engines, the authors made an experimental study of diesel combustion using a single cylinder engine. The engine performance and exhaust emissions have been measured using a wide range and high EGR rate under the conditions of high boost intake pressure. The engine test cell has been equipped the external supercharger that is able to raise the boost pressure to 500 kPa, and also equipped the EGR system to increase the EGR rate until 50% under the 500 kPa boost condition. In various test conditions of load and engine speeds the authors have obtained the results, that is, NOx has been reduced drastically without increasing Particulate Matter (PM).
Technical Paper

Achievement of Medium Engine Speed and Load Premixed Diesel Combustion with Variable Valve Timing

2006-04-03
2006-01-0203
A variable valve timing (VVT) mechanism was applied to achieve premixed diesel combustion at higher load for low emissions and high thermal efficiency in a light duty diesel engine. By means of late intake valve closing (LIVC), compressed gas temperatures near the top dead center are lowered, thereby preventing too early ignition and increasing ignition delay to enhance fuel-air mixing. The variability of effective compression ratio has significant potential for ignition timing control of conventional diesel fuel mixtures. At the same time, the expansion ratio is kept constant to ensure thermal efficiency. Combining the control of LIVC, EGR, supercharging systems and high-pressure fuel injection equipment can simultaneously reduce NOx and smoke. The NOx and smoke suppression mechanism in the premixed diesel combustion was analyzed using the 3D-CFD code combined with detailed chemistry.
Technical Paper

The Evaluation of Oxidation Catalysts for Diesel Trucks

1995-02-01
950157
The Thermogravimetry SOF measurement method is developed as simple and time-saving method. It is experimentally revealed that this method is useful for SOF measurement and the method has potential to distinguish SOF component. The oxidation catalysts can effectively reduce particulate matter under actual driving conditions. Sulfate formation suppressing oxidation catalyst reduces high molecular number paraffins. However, it is important for further development of oxidation catalyst to improve the oxidation ability of polar hydrocarbons included in SOF. The oxidation catalysts can effectively reduce CO, HC emissions under actual driving conditions. This is caused by the temperature rise of oxidation catalysts during accelerations.
Technical Paper

Visualization Experiment in a Transparent Engine With Pure and Mixed Normal Paraffin Fuels

2004-06-08
2004-01-2018
In the previous study design of two-component normal paraffin fuel was attempted considering the components and blending ratio. Only the thermodynamic analysis of combustion and analysis of emission characteristics were performed to evaluate the design performance. In this study mixture formation behavior and combustion phenomena of pure and mixed n-paraffin fuels were investigated by direct visualization in an AVL engine with bottom view piston. The experiments included laser-illuminated high-speed photography of the fuel injection phase and combustion phase to investigate physical differences. The results obtained for the proposed fuels are compared with the results of conventional diesel fuel. It was found that the two component normal paraffin fuels with similar thermo physical properties have very similar spray development pattern but evaporation rates are different.
X