Refine Your Search

Topic

Search Results

Journal Article

Simultaneous Measurements of Aromatic Hydrocarbons in Exhaust using a Laser Ionization Method

2009-11-02
2009-01-2742
A simultaneous multi-composition analyzing (SMCA) resonance enhanced multi-photon ionization (REMPI) system was used to investigate gasoline engine exhaust. Observed peaks for exhaust were smaller mass numbers than those from diesel exhaust. However, large species up to three ring aromatics were observed suggesting that soot precursor forms even in the gasoline engine. At low catalyst temperature condition, the reduction efficiencies of a three-way catalyst were higher for higher mass numbers. This result indicates that the larger species accumulate in the catalyst or elsewhere due to their lower vapor pressures. To evaluate the emission of low volatility species, the accumulation should be taken into account. In the hot mode, reduction efficiencies for aromatic species of three-way catalyst were almost 99.5% however, they fall to 70% in the cold start condition.
Journal Article

Effect of Relative Positions of Air-Fuel Mixture Distribution and Ignition on Combustion Variation in Gasoline Engine

2014-10-13
2014-01-2629
Combustion is known to be affected by variations in the air-fuel mixture concentration, residual gas concentration, turbulent kinetic energy, ignition, etc. However, because each of these factors is related to cycle-to-cycle variations, their effects on combustion variation are unclear. The purpose of this study was to clarify the influences of the air-fuel mixture distribution near the spark plug and variation in the relative position of the ignition on the combustion variation. A 4-cylinder port injection gasoline engine was used as the test engine, and the combustion variation was investigated by measuring the cylinder pressure and air-fuel ratio (A/F) near the spark plug for each cycle using a micro-Cassegrain sensor for each cylinder. The air-fuel mixture distribution was calculated using a Reynolds averaged Navier-Stokes simulation, and the spatial region of the high ignition probability was determined from the gas flow velocity.
Journal Article

High-Speed Observation and Modeling of Dimethyl Ether Spray Combustion at Engine-Like Conditions

2015-09-01
2015-01-1927
Dimethyl Ether (DME) is one of the major candidates for the alternative fuel for compression ignition (CI) engines. However, DME spray combustion characteristics are not well understood. There is no spray model validated against spray experiments at high-temperature and high-pressure relevant to combustion chambers of engines. DME has a lower viscosity and lower volumetric modulus of elasticity. It is difficult to increase injection pressure. The injection pressure remains low at 60 MPa even in the latest DME engine. To improve engine performance and reduce emissions from DME engines, establishing the DME spray model applicable to numerical engine simulation is required. In this study, high-speed observation of DME sprays at injection pressures up to 120 MPa with a latest common rail DME injection system was conducted in a constant volume combustion vessel, under ambient temperature and pressure of 6 MPa-920 K.
Journal Article

Investigation of Mechanism for Formation of EGR Deposit by in situ ATR-FTIR Spectrometer and SEM

2016-10-17
2016-01-2351
Exhaust gas recirculation (EGR) is widely used in diesel engines to reduce nitrogen oxide (NOx) emissions. However, a lacquer is formed on the EGR valve or EGR cooler due to particulate matter and other components present in diesel exhaust, causing serious problems. In this study, the mechanism of lacquer deposition is investigated using attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and scanning electron microscopy (SEM). Deposition of temperature-dependent lacquers was evaluated by varying the temperature of a diamond prism between 80 and 120 °C in an ATR-FTIR spectrometer integrated into a custom-built sample line, which branched off from the exhaust pipe of a diesel engine. Lacquers were deposited on the diamond prism at 100 °C or less, while no lacquer was deposited at 120 °C. Time-dependent ATR-FTIR spectra were obtained for approximately 2 h from the beginning of the experiment.
Journal Article

Kinetic Modeling Study of NOx Conversion Based on Physicochemical Characteristics of Hydrothermally Aged SCR/DPF Catalyst

2017-10-08
2017-01-2386
Diesel engines have better fuel economy over comparable gasoline engines and are useful for the reduction of CO2 emissions. However, to meet stringent emission standards, the technology for reducing NOx and particulate matter (PM) in diesel engine exhaust needs to be improved. A conventional selective catalytic reduction (SCR) system consists of a diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and urea-SCR catalyst. Recently, more stringent regulations have led to the development of SCR systems with a larger volume and increased the cost of such systems. In order to solve these problems, an SCR catalyst-coated DPF (SCR/DPF) is proposed. An SCR/DPF system has lower volume and cost compared to the conventional SCR system. The SCR/DPF catalyst has two functions: combustion of PM and reduction of NOx emissions.
Technical Paper

Emission Characteristics of a Urea SCR System under the NOx Level of Japanese 2009 Emission Regulation

2007-10-29
2007-01-3996
In order to discuss future technical issues for urea SCR (selective catalytic reduction) system, it is necessary to assess various technical possibilities that would be applied to urea SCR systems which is capable of complying with future emission level requirements, for example Japanese 2009 emission regulation. In this paper, three measures (enhanced insulation on a DOC (diesel oxidation catalyst), aggressive urea solution injection and idling stop) are installed on a urea SCR system of a commercial engine system in order to achieve further NOx (nitrogen oxide) reductions. With combination of these three measures, NOx is drastically reduced to the levels lower than 0.7 g/kWh, which is a NOx limit value of the Japanese 2009 emission regulation. NH3 (ammonia) and HCN (hydro cyanide) are also measured as unregulated harmful components.
Technical Paper

Simultaneous Measurements of the Components of VOCs and PAHs in Diesel Exhaust Gas using a Laser Ionization Method

2009-06-15
2009-01-1842
A simple real-time measurement system for the components of volatile organic compounds (VOCs) and polyaromatic hydrocarbons (PAHs) in automobile exhaust gas using a laser ionization method was developed. This method was used to detect VOCs and PAHs in the exhaust gas of a diesel truck while idling, at 60 km/h, and in the Japanese driving mode JE05. As a result, various VOCs and PAHs, such as xylene and naphthalene, were simultaneously detected, and real-time changes in their concentration were obtained at 1 s intervals.
Technical Paper

Real-time Analysis of Benzene in Exhaust Gas from Driving Automobiles Using Jet-REMPI Method

2009-11-02
2009-01-2740
Real-time analysis of benzene in automobile exhaust gas was performed using the Jet-REMPI (supersonic jet / resonance enhanced multi-photon ionization) method. Real-time benzene concentration of two diesel trucks and one gasoline vehicle driving in Japanese driving modes were observed under ppm level at 1 s intervals. As a result, it became obvious that there were many differences in their emission tendencies, because of their car types, driving conditions, and catalyst conditions. In two diesel vehicle, benzene emission tendencies were opposite. And, in a gasoline vehicle, emission pattern were different between hot and cold conditions due to the catalyst conditions.
Technical Paper

Effects of Fuel Properties on Combustion and Exhaust Emissions of Homogeneous Charge Compression Ignition (HCCI) Engine

2004-06-08
2004-01-1966
Homogeneous Charge Compression Ignition (HCCI) is effective for the simultaneous reduction of soot and NOx emissions from diesel engine. In general, high octane number and volatility fuels (gasoline components or gaseous fuels) are used for HCCI operation, because very lean mixture must be formed during ignition delay of the fuel. However, it is necessary to improve fuel injection systems, when these fuels are used in diesel engine. The purpose of the present study is the achievement of HCCI combustion in DI diesel engine without the large-scale improvements of engine components. Various high octane number fuels are mixed with diesel fuel as a base fuel, and the mixed fuels are directly applied to DI diesel engine. At first, the cylinder pressure and heat release rate of each mixed fuel are analyzed. The ignition delay of HCCI operation decreases with an increase in the operation load, although that of conventional diesel operation does not almost varied.
Technical Paper

The Influence of Fuel Components on PM and PAH Exhaust Emissions from a DI Diesel Engine - Effects of Pyrene and Sulfur Contents-

2001-09-24
2001-01-3693
Particulate matter (PM) and polynuclear aromatic hydrocarbons (PAH) were measured under steady state engine operating conditions in the exhaust of a DI diesel engine that meets the Japanese 1994 heavy-duty vehicle standards. In this study, to examine and discuss the effects of pyrene and sulfur contents in fuels on PM and PAH emissions, experiments were performed using both ordinary diesel fuel and a specified fuel having simple hydrocarbon components and very few aromatics. In the experiments, pyrene and sulfur contents in the fuels were changed by the addition of reagents to the fuel. The following conclusions were obtained. (1) From the experiments using ordinary JIS No. 2 diesel fuel with a pyrene reagent added to yield 400ppm pyrene, it was found that pyrene addition brings about an increase in soluble organic fraction (SOF) under low load engine operating conditions.
Technical Paper

Fuel Composition Effects on SOF and PAH Exhaust Emissions from DI Diesel Engines

1998-02-23
980507
The experiments were performed with two types of test engines, '72 model year type and '94 model year type engine, using both of conventional diesel fuel and synthetic diesel fuel, which has simple hydrocarbon components and no aromatics or sulfur content. SOF is extracted from the particulate sample exhausted out from the engines, then GC and GC-MS analyses were carried out. By comparing the results obtained, the role of high boiling point components in diesel fuel on SOF emission were observed. Further, by adding an artificially sulfur-containing compound and pyrene, which is a four ring polynuclear-aromatic-hydrocarbon (PAH), into the synthetic fuel, the effect of PAH content in fuel on PAH emission in SOF and the increase of SOF with increased sulfur content in fuel, were observed.
Technical Paper

The Emission of PAH from a DI Diesel Engine Operating on Fuels and Lubricants with Known PAH Content

1994-03-01
940342
Engine experiments were carried out in order to investigate the mechanisms involved in connection with the emission of lubricant related polyaromatic hydrocarbons (PAH) from a D.I. diesel engine. In the experiments only the mechanisms related to pyrene emissions were investigated, since synthetic fuels and lubricants containing pyrene as the only aromatic compond were used. Particulate matter (PM) and the soluble organic fraction (SOF) of PM as well as PAH emissions were measured for different engine conditions at different levels of pyrene in the lubricant and the fuel. Possible mechanisms of PAH transportation from the lubricant to the exhaust gas are discussed based on the experimental results, as well as the importance of fuel and lubricant to SOF and PAH emissions.
Technical Paper

The Evaluation of Oxidation Catalysts for Diesel Trucks

1995-02-01
950157
The Thermogravimetry SOF measurement method is developed as simple and time-saving method. It is experimentally revealed that this method is useful for SOF measurement and the method has potential to distinguish SOF component. The oxidation catalysts can effectively reduce particulate matter under actual driving conditions. Sulfate formation suppressing oxidation catalyst reduces high molecular number paraffins. However, it is important for further development of oxidation catalyst to improve the oxidation ability of polar hydrocarbons included in SOF. The oxidation catalysts can effectively reduce CO, HC emissions under actual driving conditions. This is caused by the temperature rise of oxidation catalysts during accelerations.
Technical Paper

Real World Emissions Analysis Using Sensor-based Emissions Measurement System for Light-duty Direct-Injection Gasoline Vehicle

2022-03-29
2022-01-0572
In recent years, particulate matter (PM) emitted from direct-injection gasoline vehicles is becoming an increasingly concerning problem. In addition, it is often reported that ammonia (NH3) is emitted from gasoline vehicles equipped with a three-way catalyst. These emissions might be largely emitted especially when driving in on-road driving conditions. In this study, we investigated the emissions, NOx, NH3, and PM/PN (particulate number) of a light-duty direct-injection gasoline vehicle when driving on actual roads. Using a small direct-injection gasoline vehicle equipped with a three-way catalyst, experiment was conducted 8 times on the same route, and these emissions were measured. In this study, vehicle specific power (VSP) was introduced, which can be calculated using vehicle parameters, vehicle speed, and road gradient. The effects of parameters acquired through on-board diagnostics (OBD) port and VSP on emissions were investigated.
Technical Paper

Kinetic Measurements of HNCO Hydrolysis over SCR Catalyst

2018-09-10
2018-01-1764
To meet the strict emission regulations for diesel engines, an advanced processing device such as a Urea-SCR (selective catalytic reduction) system is used to reduce NOx emissions. The Real Driving Emissions (RDE) test, which is implemented in the European Union, will expand the range of conditions under which the engine has to operate [1], which will lead to the construction of a Urea-SCR system capable of reducing NOx emissions at lower and higher temperature conditions, and at higher space velocity conditions than existing systems. Simulations are useful in improving the performance of the urea-SCR system. However, it is necessary to construct a reliable NOx reduction model to use for system design, which covers the expanded engine operation conditions. In the urea-SCR system, the mechanism of ammonia (NH3) formation from injected aqueous urea solution is not clear. Thus, it is important to clarify this mechanism to improve the NOx reduction model.
Technical Paper

Influence of Spectral Line Broadening on Measurements of NH3 Concentration in Automobile Exhaust Using Near-IR Laser Absorption Spectroscopy

2014-10-13
2014-01-2833
Recently, highly sensitive near-IR laser absorption spectrometers have been employed to measure ammonia (NH3) emissions. These instruments allow in-situ measurements of highly time-resolved NH3 emission levels in automobile exhaust. However, the effect of the automobile exhaust CO2 in NH3 measurements has not been studied in detail. Because the CO2 concentration in automobile exhaust is 2 to 3 orders of magnitude higher than the NH3 concentration, there is a possibility that spectral overlap by CO2 lines and/or the spectral broadening of NH3 by CO2 could affect the measured NH3 levels. This study had two major objectives. First, the effect of CO2 on the measured NH3 concentration was assessed using our developed near-IR laser absorption spectrometer. The second objective was to provide on-board NH3 measurements in the hybrid gasoline automobile exhaust using the developed spectrometer. As a result, the CO2 in automobile exhaust was found to affect the measured NH3 concentration.
Technical Paper

Isocyanic acid hydrolysis and ammonia-SCR reaction over hydrothermally aged Cu-ZSM5

2019-12-19
2019-01-2234
For developing complicated after-treatment equipment for diesel-engine vehicles, such as urea-selective catalytic reduction (urea-SCR) systems, construction of a reaction model that can accurately predict ammonia (NH3) formation from urea is required. Hydrolysis of isocyanic acid (HNCO) is an important intermediate reaction in NH3 formation from urea. In our previous studies [1], a new rate constant for HNCO hydrolysis over fresh Cu-ZSM5 was derived using the measurements of the reaction rate of HNCO hydrolysis with high-purity HNCO formed from cyanuric acid. In this study, the reaction rates of the HNCO hydrolysis and NH3-SCR reactions were measured over a hydrothermally aged Cu-ZSM5 catalyst. A steady-state flow reactor equipped with a Fourier transform infrared spectrometer (FTIR) was employed to obtain the reaction rate of the HNCO hydrolysis and NH3-SCR reactions.
Technical Paper

Effect of exhaust gas composition on EGR deposit formation

2019-12-19
2019-01-2358
Serious problems occur in an exhaust gas recirculation system due to an adhesive hard deposit. It is important to clarify the mechanism of the hard deposit formation to suppress it. In this study, the effect of exhaust gas composition on hard deposit formation was investigated. The amount of the hard deposit formed under various operating conditions while keeping the total hydrocarbon concentration constant was different. The component analyses of the exhaust gas and the hard deposit clarified that polycyclic aromatic hydrocarbon in the exhaust gas strongly affected the hard deposit formation.
Journal Article

Evaluation of Mechanism for EGR Deposit Formation Based on Spatially- and Time-Resolved Scanning-Electron-Microscope Observation

2020-09-15
2020-01-2027
Exhaust gas recirculation (EGR) is widely used in diesel engines to reduce nitrogen oxide emissions. To meet the strict emission regulations, e.g., Real Driving Emissions, the EGR system is required to be used at temperatures lower than the present ones. However, under cool conditions, an adhesive deposit forms on the EGR valve or cooler because of the particulate matter and other components present in the diesel exhaust. This causes sticking of the EGR valve or degradation of the heat-exchange performance, which are serious problems. In this study, the EGR deposit formation mechanism was investigated based on spatially- and time-resolved scanning electron microscopy (SEM) observation. The deposit was formed in a custom-made sample line using real exhaust emitted from a diesel engine. The exhaust including soot was introduced into the sample line for 24 h (maximum duration), and the formed deposit was observed using SEM.
Technical Paper

Real-World Emission Analysis Methods Using Sensor-Based Emission Measurement System

2020-04-14
2020-01-0381
Every year, exhaust gas regulations are getting stricter with the intention to solve the average air pollution problem, however, local roadside pollution is still a pressing issue. In order to solve this local roadside pollution problem, it is necessary to evaluate and/or predict “where” and “how much” pollutants such as NOx are emitted. To predict the local roadside pollution, it is necessary to collect emissions data from various kinds of vehicles driving on real-world and analyze them. In recent years, Real Driving Emission regulations using PEMS (Portable Emission Measurement System) have been introduced mainly in Europe. A typical PEMS configuration can weigh close to 100 kg however, and its weight affects the driving conditions of vehicles running on actual roads. In this study, we focused on the analysis of real-world emissions using SEMS (Sensor-based Emission Measurement System).
X