Refine Your Search

Search Results

Journal Article

Integrated Numerical and Experimental Approach to Determine the Cooling Air Mass Flow in Different Vehicle Development Stages

2010-04-12
2010-01-0287
This paper presents an integrated numerical and experimental approach to take best possible advantage of the common development tools at hand (1D, CFD and wind tunnel) to determine the cooling air mass flow at the different vehicle development stages. 1D tools can be used early in development when neither 3D data nor wind tunnel models with detailed underhood flow are available. A problem that has to be resolved is the dependency on input data. In particular, the pressure coefficients on the outer surface (i.e. at the air inlet and outlet region) and the pressure loss data of single components are of great importance since the amount of cooling air flow is directly linked to these variables. The pressure coefficients at the air inlet and outlet are not only a function of vehicle configuration but also of driving velocity and fan operation. Both, static and total pressure coefficient, yield different advantages and disadvantages and can therefore both be used as boundary conditions.
Journal Article

Open Grille DrivAer Model - First Results

2015-04-14
2015-01-1553
Cooling air flow is an important factor when it comes to vehicle performance and operating safety. In addition, it is closely linked to vehicle aerodynamics. In recent years more and more effort is being spent to optimize the losses generated by the flow through the vehicle. Grille shutters, better sealing and ducting are only some examples for innovations in this field of work, resulting in a lower contribution of the cooling air flow to overall drag. When investigating those effects, both experiments and numerical simulations are commonly used in the automotive environment. Still, when comparing the results from both methods, differences in the effect of cooling air flow can often be observed. To better understand the effects of cooling air flow, the ECARA Subgroup CFD decided to establish a common design for a generic open source vehicle model with a detailed underhood compartment to lay the foundation for a common investigation model.
Journal Article

The Effects of Cooling Air on the Flow Field around a Vehicle

2016-04-05
2016-01-1603
Cooling air flow is an important factor when it comes to vehicle performance and operating safety. In addition, it is closely linked to vehicle aerodynamics. In recent years more and more effort is being spent to optimize the losses generated by the flow through the vehicle. Grille shutters, better sealing and ducting are only some examples for innovations in this field of work, resulting in a lower contribution of the cooling air flow to overall drag. But cooling air not only affects the internal flow of the vehicle but also changes the flow around it. This paper will show changes in the flow field around the generic DrivAer model resulting from cooling air flow, especially in the wake behind the car and in the region around the front wheels. The results were gathered using PIV measurements, multi-hole-probe measurements and pitot tube measurements in the 1:4 model scale wind tunnel of IVK University of Stuttgart.
Journal Article

Investigation of Aerodynamic Drag in Turbulent Flow Conditions

2016-04-05
2016-01-1605
In this paper the influence of different turbulent flow conditions on the aerodynamic drag of a quarter scale model with notchback and estate back rear ends is investigated. FKFS swing® (Side Wind Generator) is used to generate a turbulent flow field in the test section of the IVK model scale wind tunnel. In order to investigate the increase in drag with increasing yaw, a steady state yaw sweep is performed for both vehicle models. The shape of the drag curves vary for each vehicle model. The notchback model shows a more pronounced drag minimum at 0° yaw angle and experiences a more severe increase in drag at increasing yaw when compared to the estate back model. Unsteady time averaged aerodynamic drag values are obtained at two flow situations with different turbulent length scales, turbulence intensities, and yaw angle amplitudes. While the first one is representing light wind, the second one is recreating the presence of strong gusty wind.
Journal Article

Numerical Comparison of Rolling Road Systems

2011-06-09
2011-37-0017
The entire automotive industry is moving towards lower CO₂ emissions and higher energy efficiency. Especially for higher driving speeds this can be achieved by minimizing aerodynamic drag. Additionally, aerodynamic downforce is essential to maintain or even improve the handling performance of a vehicle. In order to optimize the vehicle's aerodynamic efficiency in wind tunnel tests, the boundary conditions of a vehicle driving on a road must be simulated properly. Particularly for optimizing the underbody region of a vehicle, ground simulation is an important issue in every wind tunnel. Today rolling road systems featuring one or more moving belts on the wind tunnel floor are a standard tool to simulate the complex boundary condition of a vehicle driving on the road. But generally the technical effort to measure aerodynamic forces accurately increases with improvement of the aerodynamic ground simulation.
Journal Article

A Review of Some Cooling Air Flow Measurement Techniques for Model Scale, Full Scale and CFD

2013-04-08
2013-01-0598
Each component of a drive train generates waste heat due to its limited efficiency. This waste heat is usually released to an air flow guided through one or more heat exchangers. So, the realized cooling air volume flow is one important characteristic value during the vehicle development process. This paper presents some of the available techniques for the measurement of cooling air volume flow in the vehicle during the different stages of an aerodynamic development process in model scale and full scale. Additionally, it provides suggestions when comparing these experimental values to CFD results.
Technical Paper

Comparison of Different Ground Simulation Techniques for Use in Automotive Wind Tunnels

1990-02-01
900321
The range of applicability and the physical restrictions for the use of ground-simulation techniques in automotive wind tunnels are elucidated. The techniques considered are the moving-belt technique, as well as boundary layer control techniques like tangential blowing and distributed normal suction for use in wind tunnels with stationary ground boards. Attention has to be paid to the question of whether the flow to be simulated is of boundary layer or Couette type. In the case of boundary layer flow, interaction of the ground-floor boundary layer with the inviscid flow in the gap between a vehicle and the road can be fully simulated by introducing a negative transpiration velocity along the stationary ground plane. In practise however, angularity effects on the external flow result from mismatched control parameters. Very small relative ground clearances give rise to the formation of a Couette flow between the road and the vehicle.
Technical Paper

CFD Investigations of Wind Tunnel Interference Effects

2007-04-16
2007-01-1045
Wind tunnel interference effects are still considered to be negligible - or at least undesired - in automotive aerodynamics. Consequently, up to now there is no standard correction method which is used in everyday wind tunnel testing although a lot of research has been done in recent years. In most full-vehicle CFD simulations, wind tunnel interference effects are not simulated. The flow about the car is computed under idealized conditions. The wind tunnel is designed to simulate these conditions but fails to do so to some degree due to its limited size. Therefore a comparison of blockage-free CFD results and wind tunnel measurements is deficient. Hence CFD simulations including wind tunnel interference effects should be favored in the future for validation purposes. Furthermore, CFD offers new possibilities to investigate individual contributions to wind tunnel interference effects and therefore could help to increase the understanding of the flow in the wind tunnel.
Technical Paper

CFD Validation Study for a Sedan Scale Model in an Open Jet Wind Tunnel

2008-04-14
2008-01-0325
Aerodynamic simulations using CFD is now a standard tool in the automotive industry, and is becoming more and more integrated in the aerodynamic design process of new vehicles. This process is distinguished by parallel development with wind tunnel experiments and CFD simulation results, which demands comparable results to be generated by the two development tools. As wind tunnel effects are not simulated in most industrial applications of CFD, the comparison with experimental results normally show differences partly due to wind tunnel effects and ground simulation effects. Therefore a deeper understanding of wind tunnel effects and methods to fully reproduce experimental values with CFD is necessary. In this paper, an extensive validation study with a detailed scale notchback model inside an open jet wind tunnel is presented. This study includes experimental data from the real wind tunnel as well as CFD simulation results with and without wind tunnel effects.
Technical Paper

Investigations in a Cooling Air Flow System under the Influence of Road Simulation

2008-04-14
2008-01-0796
This paper presents some recent results concerning the generation and minimization of cooling air drag, achieved in an integrated approach of numerical and experimental investigations. The baseline configuration of a production cars' cooling air flow system is analyzed. The analysis of the created drag shows, that most of the force changes due to the cooling air flow appear in the front region of the vehicle. However, the forces generated by heat exchangers are only a small share of the total changes. Additional drag is generated for example by the front wheels and by the components of the underhood compartment. The investigation of the influence of the vehicle rear end shape on the aerodynamics of the cooling air flow system shows, that two similar cars with different rear end shapes (notchback and squareback) can feature different cooling air drag values.
Technical Paper

CFD Approach to Evaluate Wind-Tunnel and Model Setup Effects on Aerodynamic Drag and Lift for Detailed Vehicles

2010-04-12
2010-01-0760
Previous work by the authors showed the development of an aerodynamic CFD model using the Lattice Boltzmann Method for simulating vehicles inside the IVK Model-Scale Wind-Tunnel test-section. In both experiment and simulation, alternate configurations of the wind-tunnel geometry were studied to change the pressure distribution in the wind-tunnel test section, inducing a reduction in aerodynamic drag due to interference between the wind-tunnel geometry and the pressure on the surface of the vehicle. The wind-tunnel pressure distribution was modified by adding so-called “stagnation bodies” inside the collector to create blockage and to increase the pressure in the rear portion of the test section. The primary purpose of previous work was to provide a validated CFD approach for modeling wind-tunnel interference effects, so that these effects can be understood and accounted for when designing vehicles.
Technical Paper

Flow around an Isolated Wheel - Experimental and Numerical Comparison of Two CFD Codes

2004-03-08
2004-01-0445
This paper presents velocity and pressure measurements obtained around an isolated wheel in a rotating and stationary configuration. The flow field was investigated using LDA and a total pressure probe in the model scale wind tunnel at IVK/FKFS. Drag and lift were determined for both configurations as well as for the wheel support only. These results were used as a reference for comparing numerical results obtained from two different CFD codes used in the automotive industry, namely STAR-CD™ and PowerFLOW™. The comparison gives a good overall agreement between the experimental and the simulated data. Both CFD codes show good correlation of the integral forces. The influence of the wheel rotation on drag and lift coefficients is predicted well. All mean flow structures which can be found in the planes measured with LDA can be recognized in the numerical results of both codes. Only small local differences remain, which can be attributed to the different CFD codes.
Technical Paper

Experimental and Numerical Study of the DrivAer Model Aerodynamics

2018-04-03
2018-01-0741
The DrivAer model, a detailed generic open source vehicle geometry, was introduced a few years ago and accepted widely from industry and academia for research in the field of automotive aerodynamics. This paper presents the evaluation of the aerodynamic properties of the 25% scale DrivAer model in both, CFD and in wind tunnel experiment. The results not only include aerodynamic drag and lift but also provide detailed investigations of the flow field around the vehicle. In addition to the available geometries of the DrivAer model, individual changes were introduced created by morphing the geometry of the baseline model. A good correlation between CFD and experiment could be achieved by using a CFD setup including the geometry of the wind tunnel test section. The results give insight into the aerodynamics of the DrivAer model and lead to a better understanding of the flow around the vehicle.
Technical Paper

On the Correction of Interference Effects in Open Jet Wind Tunnels

1996-02-01
960671
This paper deals with the correction for interference effects on the flow about bluff bodies in open-jet wind tunnels. Altogether, five different interference effects in open-jet tunnels are identified and described by physical models. Besides the classical jet-expansion correction which has been treated repeatedly by various authors throughout the last 60 years, the new correction method also includes the effect of jet deflection due to the proximity of a vehicle to the nozzle. Furthermore, far-field interference effects originating from the nozzle and the collector are described. For this purpose nozzle and collector effects are treated as solid- wall blockage phenomena, and with the aid of Biot-Savart principles the induced velocity at the model position is calculated. Finally, the static- pressure gradient in an empty test section generates a horizontal buoyancy force when a model is placed in a wind tunnel stream.
Technical Paper

Contemplation of Nozzle Blockage in Open Jet Wind-Tunnels in View of Different ‘Q’ Determination Techniques

1997-02-24
970136
This paper deals with the correction of aerodynamic interference effects taking place between the nozzle of an open jet wind tunnel and a test model. In order to deduce correct aerodynamic coefficients these interference effects have to be allowed for in the determination of the correct wind tunnel speed. In open jet wind tunnels basically two different methods are used to determine the tunnel speed. One is the so-called nozzle-method, utilizing the pressure difference down the nozzle to determine the nozzle exit velocity or tunnel speed. The other procedure is the so-called plenum-method, where the pressure difference between the settling chamber and the surrounding plenum chamber of the test section is measured and used. In this paper it is shown that both methods yield a systematic error, since the velocity distribution in the nozzle differs from the velocity distribution in an unbounded stream measured at the same distance from the model.
Technical Paper

Model Scale Based Process for the Development of Aerodynamic Tire Characteristics

2014-04-01
2014-01-0585
The geometric shape of the tires can have a large influence on the aerodynamic drag of a passenger car as it has been shown already in different publications like for example [1, 2, 3]. However, to optimize the shape of a tire, nowadays quite some effort is needed in terms of wind tunnel time and costs for prototype tires. In this paper an approach to optimize the tire's shape in model scale is described, which can help to reduce both development time and costs. The first step in the development of this method was to verify that the aerodynamic effects of the tire geometry in model scale are comparable to full scale tests. This was achieved by measuring different production tires in full scale and also by measuring the quarter scale version of the same tires. The only difference between the original and the model scale tires was that the scaled tires were not deformable. The results show that the difference between two sets of tires is comparable in full scale and in quarter scale.
Technical Paper

Introduction of the AeroSUV-A New Generic SUV Model for Aerodynamic Research

2019-04-02
2019-01-0646
Since the introduction of the DrivAer model, an increasing amount of aerodynamic research and CAE method development activities are based on this detailed generic car body. Due to the Open Access nature of the model, it has not only been quickly adopted by academia but also by several automotive OEMs and CAE software developers. The DrivAer has delivered high quality experimental data to permit validation of existing aerodynamic CAE capabilities and to accelerate the development of new sophisticated numerical methods. Within the last decades, the registration number of SUV, especially in Europe, has increased significantly. Among other things, a large cross-sectional area, an increased ground clearance and larger wheels characterize this kind of vehicle. The DrivAer is not capable of depicting this vehicle category. Therefore, there is a demand for an expansion of this generic vehicle concept.
Technical Paper

The BMW AVZ Wind Tunnel Center

2010-04-12
2010-01-0118
The new BMW Aerodynamisches Versuchszentrum (AVZ) wind tunnel center includes a full-scale wind tunnel, "The BMW Windkanal" and an aerodynamic laboratory "The BMW AEROLAB." The AVZ facility incorporates numerous new technology features that provide design engineers with new tools for aerodynamic optimization of vehicles. The AVZ features a single-belt rolling road in the AEROLAB and a five-belt rolling road in the Windkanal for underbody aerodynamic simulation. Each of these rolling road types has distinct advantages, and BMW will leverage the advantages of each system. The AEROLAB features two overhead traverses that can be configured to study vehicle drafting, and both static and dynamic passing maneuvers. To accurately simulate "on-road" aerodynamic forces, a novel collector/flow stabilizer was developed that produces a very flat axial static pressure distribution. The flat static pressure distribution represents a significant improvement relative to other open jet wind tunnels.
Technical Paper

Influence of Wheel Wake on Vehicle Aerodynamics: An Eddy-Resolving Simulation Study

2023-04-11
2023-01-0842
A computational study of the vehicle aerodynamics influenced by the wake of the rotating wheel taking into account a detailed rim geometry is presently performed. The car configuration corresponds to a full-scale (1:1) notchback configuration of the well-known ‘DrivAer’ vehicle model, Heft et al. [1]. The objective of the present work is to investigate the performance of some popular turbulence models in conjunction with different methods for handling the wheel rotation – rotating wall velocity, ‘multiple reference frame’ and ‘sliding grid algorithm’. The specific focus hereby is on a near-wall RANS eddy-viscosity model based on elliptic-relaxation, sensitized to resolve fluctuating turbulence by introducing a specifically modeled production term in the scale-supplying equation, motivated by the Scale-Adaptive Simulation approach (SAS, [2]), proposed by Krumbein et al. [3].
Journal Article

The Effect of Unsteady Incident Flow on Drag Measurements for Different Vehicle Geometries in an Open Jet Wind Tunnel

2022-03-29
2022-01-0894
Automotive engineers use the wind tunnel to improve a vehicle’s aerodynamic properties on the road. However, a car driving on the road does not experience the steady-state, uniform flow characteristic of the wind tunnel. Wind, terrain and traffic all cause the flow experienced by the vehicle to be highly transient. Therefore, it is imperative to understand the effects of forces acting on the vehicle resulting from unsteady flow. To this end, the FKFS swing® installed in the University of Stuttgart’s model scale wind tunnel was used to create 36 different incident flow signals with time-resolved yaw angles. The cD values of five different 25% vehicle models, each with a notchback and a squareback configuration, were measured while under the influence of the aforementioned signals. The vehicle models were chosen to ensure a variety of different geometries, but at the same time also to enable isolated comparison of specific geometric properties.
X